{"title":"Efficient Aerial Water Harvesting with Self-Sensing Dynamic Janus Crystals","authors":"Linfeng Lan, Liang Li, Chenguang Wang, Panče Naumov* and Hongyu Zhang*, ","doi":"10.1021/jacs.4c1168910.1021/jacs.4c11689","DOIUrl":null,"url":null,"abstract":"<p >Water scarcity is one of the most pressing issues of contemporary societal development that requires innovative technologies where the material not only harvests water but also plays an active role in the process. Here, we demonstrate a highly efficient optical self-sensing approach to humidity capture from the air, where both humidity-harvesting and water-transduction functionalities are imparted on slender organic crystals by partial silanization via layer-by-layer hybridization. We report that due to the integration of the harvesting of aerial moisture and the collection of the condensed water, the ensuing Janus-type crystals capture humidity with the highest-to-date water collection efficiency of 15.96 ± 0.63 g cm<sup>–2</sup> h<sup>–1</sup>. The water-collecting elements are also capable of delivering the water by reversible and periodic elastic deformation, and their high optical transparency allows real-time monitoring of the periodic fog collection process by deformational modulation of passively or actively transduced light that outcouples at the crystal-droplet interface. The results could inspire sophisticated approaches to humidity harvesting where optically transparent crystals combine fog capture with self-sensing capabilities for continuous and optimized operation to maximize the cost-gain balance of aerial fog capture.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 44","pages":"30529–30538 30529–30538"},"PeriodicalIF":15.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c11689","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c11689","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Water scarcity is one of the most pressing issues of contemporary societal development that requires innovative technologies where the material not only harvests water but also plays an active role in the process. Here, we demonstrate a highly efficient optical self-sensing approach to humidity capture from the air, where both humidity-harvesting and water-transduction functionalities are imparted on slender organic crystals by partial silanization via layer-by-layer hybridization. We report that due to the integration of the harvesting of aerial moisture and the collection of the condensed water, the ensuing Janus-type crystals capture humidity with the highest-to-date water collection efficiency of 15.96 ± 0.63 g cm–2 h–1. The water-collecting elements are also capable of delivering the water by reversible and periodic elastic deformation, and their high optical transparency allows real-time monitoring of the periodic fog collection process by deformational modulation of passively or actively transduced light that outcouples at the crystal-droplet interface. The results could inspire sophisticated approaches to humidity harvesting where optically transparent crystals combine fog capture with self-sensing capabilities for continuous and optimized operation to maximize the cost-gain balance of aerial fog capture.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.