FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data.

Yiyao Liu, Jinyao Li, Cheng Zhao, Yongtao Zhang, Qian Chen, Jing Qin, Lei Dong, Tianfu Wang, Wei Jiang, Baiying Lei
{"title":"FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data.","authors":"Yiyao Liu, Jinyao Li, Cheng Zhao, Yongtao Zhang, Qian Chen, Jing Qin, Lei Dong, Tianfu Wang, Wei Jiang, Baiying Lei","doi":"10.1109/TMI.2024.3485612","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic and accurate classification of breast cancer in multimodal ultrasound images is crucial to improve patients' diagnosis and treatment effect and save medical resources. Methodologically, the fusion of multimodal ultrasound images often encounters challenges such as misalignment, limited utilization of complementary information, poor interpretability in feature fusion, and imbalances in sample categories. To solve these problems, we propose a feature alignment mutual attention fusion method (FAMF-Net), which consists of a region awareness alignment (RAA) block, a mutual attention fusion (MAF) block, and a reinforcement learning-based dynamic optimization strategy(RDO). Specifically, RAA achieves region awareness through class activation mapping and performs translation transformation to achieve feature alignment. When MAF utilizes a mutual attention mechanism for feature interaction fusion, it mines edge and color features separately in B-mode and shear wave elastography images, enhancing the complementarity of features and improving interpretability. Finally, RDO uses the distribution of samples and prediction probabilities during training as the state of reinforcement learning to dynamically optimize the weights of the loss function, thereby solving the problem of class imbalance. The experimental results based on our clinically obtained dataset demonstrate the effectiveness of the proposed method. Our code will be available at: https://github.com/Magnety/Multi_modal_Image.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3485612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic and accurate classification of breast cancer in multimodal ultrasound images is crucial to improve patients' diagnosis and treatment effect and save medical resources. Methodologically, the fusion of multimodal ultrasound images often encounters challenges such as misalignment, limited utilization of complementary information, poor interpretability in feature fusion, and imbalances in sample categories. To solve these problems, we propose a feature alignment mutual attention fusion method (FAMF-Net), which consists of a region awareness alignment (RAA) block, a mutual attention fusion (MAF) block, and a reinforcement learning-based dynamic optimization strategy(RDO). Specifically, RAA achieves region awareness through class activation mapping and performs translation transformation to achieve feature alignment. When MAF utilizes a mutual attention mechanism for feature interaction fusion, it mines edge and color features separately in B-mode and shear wave elastography images, enhancing the complementarity of features and improving interpretability. Finally, RDO uses the distribution of samples and prediction probabilities during training as the state of reinforcement learning to dynamically optimize the weights of the loss function, thereby solving the problem of class imbalance. The experimental results based on our clinically obtained dataset demonstrate the effectiveness of the proposed method. Our code will be available at: https://github.com/Magnety/Multi_modal_Image.

FAMF-Net:通过不平衡数据进行乳腺癌诊断的特征对齐与区域感知相互关注融合。
自动、准确地对多模态超声图像中的乳腺癌进行分类,对于提高患者的诊断和治疗效果以及节约医疗资源至关重要。在方法学上,多模态超声图像的融合经常会遇到一些挑战,如对齐错误、互补信息利用有限、特征融合的可解释性差、样本类别不平衡等。为了解决这些问题,我们提出了一种特征配准相互关注融合方法(FAMF-Net),它由区域感知配准(RAA)模块、相互关注融合(MAF)模块和基于强化学习的动态优化策略(RDO)组成。具体来说,RAA 通过类激活映射实现区域感知,并执行平移变换以实现特征对齐。当 MAF 利用相互关注机制进行特征交互融合时,它将 B 模式和剪切波弹性成像图像中的边缘特征和颜色特征分别挖掘出来,增强了特征的互补性,提高了可解释性。最后,RDO 将训练过程中的样本分布和预测概率作为强化学习的状态,动态优化损失函数的权重,从而解决了类不平衡的问题。基于临床数据集的实验结果证明了所提方法的有效性。我们的代码可在以下网址获取:https://github.com/Magnety/Multi_modal_Image。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信