Functional Brain Network Identification in Opioid Use Disorder Using Machine Learning Analysis of Resting-State fMRI BOLD Signals.

ArXiv Pub Date : 2024-11-26
Ahmed Temtam, Megan A Witherow, Liangsuo Ma, M Shibly Sadique, F Gerard Moeller, Khan M Iftekharuddin
{"title":"Functional Brain Network Identification in Opioid Use Disorder Using Machine Learning Analysis of Resting-State fMRI BOLD Signals.","authors":"Ahmed Temtam, Megan A Witherow, Liangsuo Ma, M Shibly Sadique, F Gerard Moeller, Khan M Iftekharuddin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the neurobiology of opioid use disorder (OUD) using resting-state functional magnetic resonance imaging (rs-fMRI) may help inform treatment strategies to improve patient outcomes. Recent literature suggests temporal characteristics of rs-fMRI blood oxygenation level-dependent (BOLD) signals may offer complementary information to functional connectivity analysis. However, existing studies of OUD analyze BOLD signals using measures computed across all time points. This study, for the first time in the literature, employs data-driven machine learning (ML) modeling of rs-fMRI BOLD features representing multiple time points to identify region(s) of interest that differentiate OUD subjects from healthy controls (HC). Following the triple network model, we obtain rs-fMRI BOLD features from the default mode network (DMN), salience network (SN), and executive control network (ECN) for 31 OUD and 45 HC subjects. Then, we use the Boruta ML algorithm to identify statistically significant BOLD features that differentiate OUD from HC, identifying the DMN as the most salient functional network for OUD. Furthermore, we conduct brain activity mapping, showing heightened neural activity within the DMN for OUD. We perform 5-fold cross-validation classification (OUD vs. HC) experiments to study the discriminative power of functional network features with and without fusing demographic features. The DMN shows the most discriminative power, achieving mean AUC and F1 scores of 80.91% and 73.97%, respectively, when fusing BOLD and demographic features. Follow-up Boruta analysis using BOLD features extracted from the medial prefrontal cortex, posterior cingulate cortex, and left and right temporoparietal junctions reveals significant features for all four functional hubs within the DMN.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537338/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the neurobiology of opioid use disorder (OUD) using resting-state functional magnetic resonance imaging (rs-fMRI) may help inform treatment strategies to improve patient outcomes. Recent literature suggests temporal characteristics of rs-fMRI blood oxygenation level-dependent (BOLD) signals may offer complementary information to functional connectivity analysis. However, existing studies of OUD analyze BOLD signals using measures computed across all time points. This study, for the first time in the literature, employs data-driven machine learning (ML) modeling of rs-fMRI BOLD features representing multiple time points to identify region(s) of interest that differentiate OUD subjects from healthy controls (HC). Following the triple network model, we obtain rs-fMRI BOLD features from the default mode network (DMN), salience network (SN), and executive control network (ECN) for 31 OUD and 45 HC subjects. Then, we use the Boruta ML algorithm to identify statistically significant BOLD features that differentiate OUD from HC, identifying the DMN as the most salient functional network for OUD. Furthermore, we conduct brain activity mapping, showing heightened neural activity within the DMN for OUD. We perform 5-fold cross-validation classification (OUD vs. HC) experiments to study the discriminative power of functional network features with and without fusing demographic features. The DMN shows the most discriminative power, achieving mean AUC and F1 scores of 80.91% and 73.97%, respectively, when fusing BOLD and demographic features. Follow-up Boruta analysis using BOLD features extracted from the medial prefrontal cortex, posterior cingulate cortex, and left and right temporoparietal junctions reveals significant features for all four functional hubs within the DMN.

利用机器学习分析静息态 fMRI BOLD 信号识别阿片类药物使用障碍的大脑功能网络
利用静息态功能磁共振成像(rs-fMRI)了解阿片类药物使用障碍(OUD)的神经生物学,有助于为改善患者预后的治疗策略提供信息。最近的文献表明,rs-fMRI 血液氧合水平依赖性(BOLD)信号的时间特征可为功能连通性分析提供补充信息。然而,现有的 OUD 研究使用计算所有时间点的测量值来分析 BOLD 信号。本研究在文献中首次采用了数据驱动的机器学习(ML)模型,对代表多个时间点的 rs-fMRI BOLD 特征进行建模,以确定将 OUD 受试者与健康对照组(HC)区分开来的感兴趣区域。根据三重网络模型,我们从默认模式网络(DMN)、显著性网络(SN)和执行控制网络(ECN)获得了 31 名 OUD 受试者和 45 名 HC 受试者的 rs-fMRI BOLD 特征。然后,我们使用 Boruta ML 算法识别出具有统计学意义的 BOLD 特征,将 OUD 与 HC 区分开来,确定 DMN 是 OUD 最突出的功能网络。此外,我们还进行了脑活动图谱分析,结果显示 OUD 在 DMN 中的神经活动增强。我们进行了 5 倍交叉验证分类(OUD vs. HC)实验,研究功能网络特征在融合和不融合人口特征的情况下的鉴别力。在融合 BOLD 和人口统计学特征时,DMN 显示出最强的分辨能力,平均 AUC 和 F1 分数分别达到 80.91% 和 73.97%。使用从内侧前额叶皮层、后扣带回皮层以及左右颞顶叶交界处提取的 BOLD 特征进行的后续 Boruta 分析显示,DMN 中的所有四个功能枢纽都具有重要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信