Application of computational algorithms for single-cell RNA-seq and ATAC-seq in neurodegenerative diseases.

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hwisoo Choi, Hyeonkyu Kim, Hoebin Chung, Dong-Sung Lee, Junil Kim
{"title":"Application of computational algorithms for single-cell RNA-seq and ATAC-seq in neurodegenerative diseases.","authors":"Hwisoo Choi, Hyeonkyu Kim, Hoebin Chung, Dong-Sung Lee, Junil Kim","doi":"10.1093/bfgp/elae044","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in single-cell technologies, including single-cell RNA sequencing (scRNA-seq) and Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq), have greatly improved our insight into the epigenomic landscapes across various biological contexts and diseases. This paper reviews key computational tools and machine learning approaches that integrate scRNA-seq and scATAC-seq data to facilitate the alignment of transcriptomic data with chromatin accessibility profiles. Applying these integrated single-cell technologies in neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, reveals how changes in chromatin accessibility and gene expression can illuminate pathogenic mechanisms and identify potential therapeutic targets. Despite facing challenges like data sparsity and computational demands, ongoing enhancements in scATAC-seq and scRNA-seq technologies, along with better analytical methods, continue to expand their applications. These advancements promise to revolutionize our approach to medical research and clinical diagnostics, offering a comprehensive view of cellular function and disease pathology.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in single-cell technologies, including single-cell RNA sequencing (scRNA-seq) and Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq), have greatly improved our insight into the epigenomic landscapes across various biological contexts and diseases. This paper reviews key computational tools and machine learning approaches that integrate scRNA-seq and scATAC-seq data to facilitate the alignment of transcriptomic data with chromatin accessibility profiles. Applying these integrated single-cell technologies in neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, reveals how changes in chromatin accessibility and gene expression can illuminate pathogenic mechanisms and identify potential therapeutic targets. Despite facing challenges like data sparsity and computational demands, ongoing enhancements in scATAC-seq and scRNA-seq technologies, along with better analytical methods, continue to expand their applications. These advancements promise to revolutionize our approach to medical research and clinical diagnostics, offering a comprehensive view of cellular function and disease pathology.

单细胞 RNA-seq 和 ATAC-seq 计算算法在神经退行性疾病中的应用。
单细胞技术的最新进展,包括单细胞RNA测序(scRNA-seq)和转座酶可及染色质测序(scATAC-seq),大大提高了我们对各种生物背景和疾病的表观基因组景观的洞察力。本文综述了整合 scRNA-seq 和 scATAC-seq 数据的关键计算工具和机器学习方法,以促进转录组数据与染色质可及性图谱的配准。在阿尔茨海默病和帕金森病等神经退行性疾病中应用这些集成单细胞技术,揭示了染色质可及性和基因表达的变化如何阐明致病机制并确定潜在的治疗靶点。尽管面临数据稀缺和计算需求等挑战,scATAC-seq 和 scRNA-seq 技术的不断改进以及更好的分析方法仍在继续扩大其应用范围。这些进步有望彻底改变我们的医学研究和临床诊断方法,为细胞功能和疾病病理提供一个全面的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in Functional Genomics
Briefings in Functional Genomics BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.30
自引率
2.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data. The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信