Formation of bone tissue apatite on starch-based nanofiber-capped nanohydroxyapatite and reduced graphene oxide: a preliminary study.

IF 1.7 Q3 DENTISTRY, ORAL SURGERY & MEDICINE
Rethinam Senthil
{"title":"Formation of bone tissue apatite on starch-based nanofiber-capped nanohydroxyapatite and reduced graphene oxide: a preliminary study.","authors":"Rethinam Senthil","doi":"10.1007/s10006-024-01303-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>In the present study, blends of polyvinyl alcohol (PVA), starch (SH), nanohydroxyapatite (Nano-HA), and reduced graphene oxide (r-GO) were used to fabricate an electrospun nano scaffold (ENS), via electrospinning for their potential application in oral and maxillofacial bone soft and hard tissue regeneration.</p><p><strong>Materials and methods: </strong>The scaffold was characterized for its physicochemical and mechanical properties. An invitro study was carried out using human osteoblast MG-63 bone cells. Surface characterization, particularly the analysis of calcium content, was performed before and after immersion in the simulated body fluid (SBF). Additionally, the impact of surface treatment on antimicrobial activity was investigated.</p><p><strong>Results: </strong>The results demonstrated that the tensile strength (18.12 ± 0.14 MPa), elongation at break (19.23 ± 0.11%), and flexing index (20.15 ± 0.13%) of the ENS were outstanding, indicating promising performance. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays demonstrated the biocompatible nature of the ENS. The bioactivity test result of ENS showed excellent deposition of bone apatite crystals. The ENS exhibited antimicrobial properties against E. coli (3.41 ± 0.03 mm) and S. aureus (3.12 ± 0.08 mm).</p><p><strong>Conclusions: </strong>The ENS, possessing the desired properties, has the potential to be tested in large animals for oral and maxillofacial bone and soft tissue regeneration after obtaining the necessary approvals. The developed ENS offers a promising solution for bone tissue regeneration in the oral and maxillofacial region.</p>","PeriodicalId":47251,"journal":{"name":"Oral and Maxillofacial Surgery-Heidelberg","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oral and Maxillofacial Surgery-Heidelberg","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10006-024-01303-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: In the present study, blends of polyvinyl alcohol (PVA), starch (SH), nanohydroxyapatite (Nano-HA), and reduced graphene oxide (r-GO) were used to fabricate an electrospun nano scaffold (ENS), via electrospinning for their potential application in oral and maxillofacial bone soft and hard tissue regeneration.

Materials and methods: The scaffold was characterized for its physicochemical and mechanical properties. An invitro study was carried out using human osteoblast MG-63 bone cells. Surface characterization, particularly the analysis of calcium content, was performed before and after immersion in the simulated body fluid (SBF). Additionally, the impact of surface treatment on antimicrobial activity was investigated.

Results: The results demonstrated that the tensile strength (18.12 ± 0.14 MPa), elongation at break (19.23 ± 0.11%), and flexing index (20.15 ± 0.13%) of the ENS were outstanding, indicating promising performance. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays demonstrated the biocompatible nature of the ENS. The bioactivity test result of ENS showed excellent deposition of bone apatite crystals. The ENS exhibited antimicrobial properties against E. coli (3.41 ± 0.03 mm) and S. aureus (3.12 ± 0.08 mm).

Conclusions: The ENS, possessing the desired properties, has the potential to be tested in large animals for oral and maxillofacial bone and soft tissue regeneration after obtaining the necessary approvals. The developed ENS offers a promising solution for bone tissue regeneration in the oral and maxillofacial region.

在淀粉基纳米纤维包裹的纳米羟基磷灰石和还原氧化石墨烯上形成骨组织磷灰石:初步研究。
研究目的本研究采用聚乙烯醇(PVA)、淀粉(SH)、纳米羟基磷灰石(Nano-HA)和还原氧化石墨烯(r-GO)的混合物,通过电纺丝法制造电纺纳米支架(ENS),以实现其在口腔颌面骨软硬组织再生中的潜在应用:材料和方法:对支架的物理化学和机械性能进行了表征。使用人成骨细胞 MG-63 骨细胞进行了一项体外研究。在模拟体液(SBF)中浸泡前后进行了表面表征,特别是钙含量分析。此外,还研究了表面处理对抗菌活性的影响:结果表明,ENS 的拉伸强度(18.12 ± 0.14 兆帕)、断裂伸长率(19.23 ± 0.11%)和弯曲指数(20.15 ± 0.13%)都非常出色,表明其性能前景广阔。3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四氮唑(MTT)试验证明了 ENS 的生物相容性。ENS的生物活性测试结果表明,骨磷灰石晶体沉积效果极佳。ENS 对大肠杆菌(3.41 ± 0.03 mm)和金黄色葡萄球菌(3.12 ± 0.08 mm)具有抗菌特性:ENS 具有所需的特性,在获得必要的批准后,有可能在大型动物身上进行口腔颌面骨和软组织再生试验。所开发的 ENS 为口腔颌面部骨组织再生提供了一种前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oral and Maxillofacial Surgery-Heidelberg
Oral and Maxillofacial Surgery-Heidelberg DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
3.20
自引率
5.60%
发文量
118
期刊介绍: Oral & Maxillofacial Surgery founded as Mund-, Kiefer- und Gesichtschirurgie is a peer-reviewed online journal. It is designed for clinicians as well as researchers.The quarterly journal offers comprehensive coverage of new techniques, important developments and innovative ideas in oral and maxillofacial surgery and interdisciplinary aspects of cranial, facial and oral diseases and their management. The journal publishes papers of the highest scientific merit and widest possible scope on work in oral and maxillofacial surgery as well as supporting specialties. Practice-oriented articles help improve the methods used in oral and maxillofacial surgery.Every aspect of oral and maxillofacial surgery is fully covered through a range of invited review articles, clinical and research articles, technical notes, abstracts, and case reports. Specific topics are: aesthetic facial surgery, clinical pathology, computer-assisted surgery, congenital and craniofacial deformities, dentoalveolar surgery, head and neck oncology, implant dentistry, oral medicine, orthognathic surgery, reconstructive surgery, skull base surgery, TMJ and trauma.Time-limited reviewing and electronic processing allow to publish articles as fast as possible. Accepted articles are rapidly accessible online.Clinical studies submitted for publication have to include a declaration that they have been approved by an ethical committee according to the World Medical Association Declaration of Helsinki 1964 (last amendment during the 52nd World Medical Association General Assembly, Edinburgh, Scotland, October 2000). Experimental animal studies have to be carried out according to the principles of laboratory animal care (NIH publication No 86-23, revised 1985).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信