Sarah Werner Lass, Bailey E Smith, Shaw Camphire, Rory A Eutsey, Jojo A Prentice, Saigopalakrishna S Yerneni, Ashni Arun, Andrew A Bridges, Jason W Rosch, James F Conway, Phil Campbell, N Luisa Hiller
{"title":"Pneumococcal extracellular vesicles mediate horizontal gene transfer via the transformation machinery.","authors":"Sarah Werner Lass, Bailey E Smith, Shaw Camphire, Rory A Eutsey, Jojo A Prentice, Saigopalakrishna S Yerneni, Ashni Arun, Andrew A Bridges, Jason W Rosch, James F Conway, Phil Campbell, N Luisa Hiller","doi":"10.1128/msphere.00727-24","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial cells secrete extracellular vesicles (EVs), the function of which is a matter of intense investigation. Here, we show that the EVs secreted by the human pathogen <i>Streptococcus pneumoniae</i> (pneumococcus) are associated with bacterial DNA on their surface and can deliver this DNA to the transformation machinery of competent cells. These findings suggest that EVs contribute to gene transfer in Gram-positive bacteria and, in doing so, may promote the spread of drug resistance genes in the population.IMPORTANCEThis work extends our understanding of horizontal gene transfer and the roles of extracellular vesicles in pneumococcus. This bacterium serves as the model for transformation, a process by which bacteria can take up naked DNA from the environment. Here, we show that extracellular vesicles secreted by the pneumococcus have DNA on their surface and that this DNA can be imported by the transformation machinery, facilitating gene transfer. Understanding EV-mediated gene transfer may provide new avenues to manage the spread of antibiotic drug resistance.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00727-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial cells secrete extracellular vesicles (EVs), the function of which is a matter of intense investigation. Here, we show that the EVs secreted by the human pathogen Streptococcus pneumoniae (pneumococcus) are associated with bacterial DNA on their surface and can deliver this DNA to the transformation machinery of competent cells. These findings suggest that EVs contribute to gene transfer in Gram-positive bacteria and, in doing so, may promote the spread of drug resistance genes in the population.IMPORTANCEThis work extends our understanding of horizontal gene transfer and the roles of extracellular vesicles in pneumococcus. This bacterium serves as the model for transformation, a process by which bacteria can take up naked DNA from the environment. Here, we show that extracellular vesicles secreted by the pneumococcus have DNA on their surface and that this DNA can be imported by the transformation machinery, facilitating gene transfer. Understanding EV-mediated gene transfer may provide new avenues to manage the spread of antibiotic drug resistance.
细菌细胞会分泌胞外囊泡(EVs),其功能一直是人们研究的热点。在这里,我们发现人类病原体肺炎链球菌(肺炎球菌)分泌的细胞外囊泡表面与细菌 DNA 相关联,并能将 DNA 运送到合格细胞的转化机制中。这些研究结果表明,细胞外囊泡有助于革兰氏阳性细菌的基因转移,从而可能促进耐药基因在群体中的传播。这种细菌是转化的典范,通过转化,细菌可以从环境中吸收裸 DNA。在这里,我们发现肺炎球菌分泌的胞外囊泡表面有 DNA,这种 DNA 可以被转化机器导入,从而促进基因转移。了解由细胞外小泡介导的基因转移可能会为控制抗生素耐药性的传播提供新的途径。
期刊介绍:
mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.