Richard C Chang, Ryan Scott Whitlock, Erika Joloya, Kaitlin Thanh To, Yikai Huang, Bruce Blumberg
{"title":"Tributyltin Enhances Macrophage Inflammation and Lipolysis, Contributing to Adipose Tissue Dysfunction.","authors":"Richard C Chang, Ryan Scott Whitlock, Erika Joloya, Kaitlin Thanh To, Yikai Huang, Bruce Blumberg","doi":"10.1210/jendso/bvae187","DOIUrl":null,"url":null,"abstract":"<p><p>Tributyltin (TBT) is a synthetic chemical widely used in industrial and commercial applications. TBT exposure has been proven to elicit obesogenic effects. Gestational exposure led to increased white adipose tissue depot size in exposed (F1, F2) animals and in unexposed generations (F3, F4), an example of transgenerational inheritance. TBT exerts these effects in part by increasing the number and size of white adipocytes, altering the fate of multipotent mesenchymal stromal stem cells to favor the adipocyte lineage, altering adipokine secretion, and modulating chromatin structure. Adipose tissue resident macrophages are critical regulators in adipose tissue; however, the effects of TBT on adipose tissue macrophages remained unclear. Here we investigated the effects of TBT on macrophages and consequent impacts on adipocyte function. TBT significantly enhanced palmitate-induced inflammatory gene expression in mouse bone marrow derived macrophages and this effect was attenuated by the antagonizing action of the nuclear receptor peroxisome proliferator activated receptor gamma. TBT-treated macrophages decreased lipid accumulation in white adipocytes differentiated from mesenchymal stromal stem cells accompanied by increased expression of lipolysis genes. Lastly, ancestral TBT exposure increased <i>Tnf</i> expression in adipose tissue resident macrophages in both exposed (F2) and unexposed (F3) generations, suggesting that TBT exposure led to an inherited predisposition toward inflammatory adipose tissue macrophages that can manipulate adipose tissue function. These findings provide new insights into the interplay between adipocytes and adipose tissue macrophages in obesity, further establishing a role for obesogens such as TBT in the development of obesity-related metabolic disorders.</p>","PeriodicalId":17334,"journal":{"name":"Journal of the Endocrine Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535727/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Endocrine Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1210/jendso/bvae187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Tributyltin (TBT) is a synthetic chemical widely used in industrial and commercial applications. TBT exposure has been proven to elicit obesogenic effects. Gestational exposure led to increased white adipose tissue depot size in exposed (F1, F2) animals and in unexposed generations (F3, F4), an example of transgenerational inheritance. TBT exerts these effects in part by increasing the number and size of white adipocytes, altering the fate of multipotent mesenchymal stromal stem cells to favor the adipocyte lineage, altering adipokine secretion, and modulating chromatin structure. Adipose tissue resident macrophages are critical regulators in adipose tissue; however, the effects of TBT on adipose tissue macrophages remained unclear. Here we investigated the effects of TBT on macrophages and consequent impacts on adipocyte function. TBT significantly enhanced palmitate-induced inflammatory gene expression in mouse bone marrow derived macrophages and this effect was attenuated by the antagonizing action of the nuclear receptor peroxisome proliferator activated receptor gamma. TBT-treated macrophages decreased lipid accumulation in white adipocytes differentiated from mesenchymal stromal stem cells accompanied by increased expression of lipolysis genes. Lastly, ancestral TBT exposure increased Tnf expression in adipose tissue resident macrophages in both exposed (F2) and unexposed (F3) generations, suggesting that TBT exposure led to an inherited predisposition toward inflammatory adipose tissue macrophages that can manipulate adipose tissue function. These findings provide new insights into the interplay between adipocytes and adipose tissue macrophages in obesity, further establishing a role for obesogens such as TBT in the development of obesity-related metabolic disorders.