Janaka S. S. Liyanage, Jane S. Hankins, Jeremie H. Estepp, Deokumar Srivastava, Sara R. Rashkin, Clifford Takemoto, Yun Li, Yuehua Cui, Motomi Mori, Mitchell J. Weiss, Guolian Kang
{"title":"A Novel One-Sample Mendelian Randomization Approach for Count-Type Outcomes That Is Robust to Correlated and Uncorrelated Pleiotropic Effects","authors":"Janaka S. S. Liyanage, Jane S. Hankins, Jeremie H. Estepp, Deokumar Srivastava, Sara R. Rashkin, Clifford Takemoto, Yun Li, Yuehua Cui, Motomi Mori, Mitchell J. Weiss, Guolian Kang","doi":"10.1002/gepi.22602","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We propose two novel one-sample Mendelian randomization (MR) approaches to causal inference from count-type health outcomes, tailored to both equidispersion and overdispersion conditions. Selecting valid single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) poses a key challenge for MR approaches, as it requires meeting the necessary IV assumptions. To bolster the proposed approaches by addressing violations of IV assumptions, we incorporate a process for removing invalid SNPs that violate the assumptions. In simulations, our proposed approaches demonstrate robustness to the violations, delivering valid estimates, and interpretable type-I errors and statistical power. This increases the practical applicability of the models. We applied the proposed approaches to evaluate the causal effect of fetal hemoglobin (HbF) on the vaso-occlusive crisis and acute chest syndrome (ACS) events in patients with sickle cell disease (SCD) and revealed the causal relation between HbF and ACS events in these patients. We also developed a user-friendly Shiny web application to facilitate researchers' exploration of causal relations.</p>\n </div>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22602","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose two novel one-sample Mendelian randomization (MR) approaches to causal inference from count-type health outcomes, tailored to both equidispersion and overdispersion conditions. Selecting valid single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) poses a key challenge for MR approaches, as it requires meeting the necessary IV assumptions. To bolster the proposed approaches by addressing violations of IV assumptions, we incorporate a process for removing invalid SNPs that violate the assumptions. In simulations, our proposed approaches demonstrate robustness to the violations, delivering valid estimates, and interpretable type-I errors and statistical power. This increases the practical applicability of the models. We applied the proposed approaches to evaluate the causal effect of fetal hemoglobin (HbF) on the vaso-occlusive crisis and acute chest syndrome (ACS) events in patients with sickle cell disease (SCD) and revealed the causal relation between HbF and ACS events in these patients. We also developed a user-friendly Shiny web application to facilitate researchers' exploration of causal relations.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.