Somy evolution in the honey bee infecting trypanosomatid parasite, Lotmaria passim.

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY
Lindsey M Markowitz, Anthony Nearman, Zexuan Zhao, Dawn Boncristiani, Anzhelika Butenko, Luis Miguel de Pablos, Arturo Marin, Guang Xu, Carlos A Machado, Ryan S Schwarz, Evan C Palmer-Young, Jay D Evans
{"title":"Somy evolution in the honey bee infecting trypanosomatid parasite, Lotmaria passim.","authors":"Lindsey M Markowitz, Anthony Nearman, Zexuan Zhao, Dawn Boncristiani, Anzhelika Butenko, Luis Miguel de Pablos, Arturo Marin, Guang Xu, Carlos A Machado, Ryan S Schwarz, Evan C Palmer-Young, Jay D Evans","doi":"10.1093/g3journal/jkae258","DOIUrl":null,"url":null,"abstract":"<p><p>Lotmaria passim is a ubiquitous trypanosomatid parasite of honey bees nestled within the medically important subfamily Leishmaniinae. Although this parasite is associated with honey bee colony losses, the original draft genome-which was completed before its differentiation from the closely related Crithidia mellificae-has remained the reference for this species despite lacking improvements from newer methodologies. Here we report the updated sequencing, assembly, and annotation of the BRL type strain (ATCC PRA-422) of Lotmaria passim. The nuclear genome assembly has been resolved into 31 complete chromosomes and is paired with an assembled kinetoplast genome consisting of a maxicircle and 30 minicircle sequences. The assembly spans 33.7 Mb and contains very little repetitive content, from which our annotation of both the nuclear assembly and kinetoplast predicted 10,288 protein-coding genes. Analyses of the assembly revealed evidence of a recent chromosomal duplication event within chromosomes 5 and 6 and provides evidence for a high level of aneuploidy in this species, mirroring the genomic flexibility employed by other trypanosomatids as a means of adaptation to different environments. This high-quality reference can therefore provide insights into adaptations of trypanosomatids to the thermally regulated, acidic, and phytochemically rich honey bee hindgut niche, which offers parallels to the challenges faced by other Leishmaniinae during the challenges they undergo within insect vectors, during infection of mammals, and exposure to antiparasitic drugs throughout their multi-host life cycles. This reference will also facilitate investigations of strain-specific genomic polymorphisms, their role in pathogenicity, and the development of treatments for pollinator infection.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae258","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Lotmaria passim is a ubiquitous trypanosomatid parasite of honey bees nestled within the medically important subfamily Leishmaniinae. Although this parasite is associated with honey bee colony losses, the original draft genome-which was completed before its differentiation from the closely related Crithidia mellificae-has remained the reference for this species despite lacking improvements from newer methodologies. Here we report the updated sequencing, assembly, and annotation of the BRL type strain (ATCC PRA-422) of Lotmaria passim. The nuclear genome assembly has been resolved into 31 complete chromosomes and is paired with an assembled kinetoplast genome consisting of a maxicircle and 30 minicircle sequences. The assembly spans 33.7 Mb and contains very little repetitive content, from which our annotation of both the nuclear assembly and kinetoplast predicted 10,288 protein-coding genes. Analyses of the assembly revealed evidence of a recent chromosomal duplication event within chromosomes 5 and 6 and provides evidence for a high level of aneuploidy in this species, mirroring the genomic flexibility employed by other trypanosomatids as a means of adaptation to different environments. This high-quality reference can therefore provide insights into adaptations of trypanosomatids to the thermally regulated, acidic, and phytochemically rich honey bee hindgut niche, which offers parallels to the challenges faced by other Leishmaniinae during the challenges they undergo within insect vectors, during infection of mammals, and exposure to antiparasitic drugs throughout their multi-host life cycles. This reference will also facilitate investigations of strain-specific genomic polymorphisms, their role in pathogenicity, and the development of treatments for pollinator infection.

蜜蜂感染锥虫寄生虫 Lotmaria passim 的索米进化。
Lotmaria passim 是一种无处不在的蜜蜂锥虫寄生虫,隶属于具有重要医学价值的利什曼尼亚科。尽管这种寄生虫与蜜蜂蜂群的损失有关,但最初的基因组草案--在它从密切相关的Crithidia mellificae分化出来之前就已完成--仍然是该物种的参考文献,尽管缺乏更新方法的改进。在此,我们报告了对 Lotmaria passim 的 BRL 型菌株(ATCC PRA-422)进行的最新测序、组装和注释。核基因组已被解析为 31 条完整的染色体,并与由一个大圆序列和 30 个小圆序列组成的动粒基因组配对。该基因组横跨 33.7 Mb,重复内容极少,我们对核基因组和动粒基因组的注释预测出了 10,288 个编码蛋白质的基因。对装配的分析表明,在第 5 号和第 6 号染色体上最近发生了染色体复制事件,并提供了该物种非整倍体程度较高的证据,这反映了其他锥虫作为适应不同环境的一种手段所具有的基因组灵活性。因此,这份高质量的参考文献可以帮助人们深入了解锥虫对热调节、酸性和富含植物化学物质的蜜蜂后肠生态位的适应情况,这与其他利什曼病原体在昆虫载体中、在感染哺乳动物期间以及在其多宿主生命周期中接触抗寄生虫药物时所面临的挑战相似。该参考文献还将有助于研究毒株特异性基因组多态性、它们在致病性中的作用以及开发治疗授粉者感染的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信