Ziyan Wang, Yi Zhou, Ninghui Xu, Yuqin Zhou, Heran Zhao, Zhiyong Chang, Zhigang Hu, Xiao Han, Yuke Song, Zuojian Zhou, Tianshu Wang, Tao Yang, Kongfa Hu
{"title":"Advanced Camera-Based Scoliosis Screening via Deep Learning Detection and Fusion of Trunk, Limb, and Skeleton Features.","authors":"Ziyan Wang, Yi Zhou, Ninghui Xu, Yuqin Zhou, Heran Zhao, Zhiyong Chang, Zhigang Hu, Xiao Han, Yuke Song, Zuojian Zhou, Tianshu Wang, Tao Yang, Kongfa Hu","doi":"10.1109/JBHI.2024.3491855","DOIUrl":null,"url":null,"abstract":"<p><p>Scoliosis significantly impacts quality of life, highlighting the need for effective early scoliosis screening (SS) and intervention. However, current SS methods often involve physical contact, undressing, or radiation exposure. This study introduces an innovative, non-invasive SS approach utilizing a monocular RGB camera that eliminates the need for undressing, sensor attachment, and radiation exposure. We introduce a novel approach that employs Parameterized Human 3D Reconstruction (PH3DR) to reconstruct 3D human models, thereby effectively eliminating clothing obstructions, seamlessly integrated with an ISANet segmentation network, which has been enhanced by Multi-Scale Fusion Attention (MSFA) module we proposed for facilitating the segmentation of distinct human trunk and limb features (HTLF), capturing body surface asymmetries related to scoliosis. Additionally, we propose a Swin Transformer-enhanced CMU-Pose to extract human skeleton features (HSF), identifying skeletal asymmetries crucial for SS. Finally, we develop a fusion model that integrates the HTLF and HSF, combining surface morphology and skeletal features to improve the precision of SS. The experiments demonstrated that PH3DR and MSFA significantly improved the segmentation and extraction of HTLF, whereas ST-based CMU-Pose substantially enhanced the extraction of HSF. Our final model achieved a comparable F1 (0.895 ±0.014) to the best-performing baseline model, with only 0.79% of the parameters and 1.64% of the FLOPs, achieving 36 FPS-significantly higher than the best-performing baseline model (10 FPS). Moreover, our model outperformed two spine surgeons, one less experienced and the other moderately experienced. With its patient-friendly, privacy-preserving, and easily deployable solution, this approach is particularly well-suited for early SS and routine monitoring.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3491855","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Scoliosis significantly impacts quality of life, highlighting the need for effective early scoliosis screening (SS) and intervention. However, current SS methods often involve physical contact, undressing, or radiation exposure. This study introduces an innovative, non-invasive SS approach utilizing a monocular RGB camera that eliminates the need for undressing, sensor attachment, and radiation exposure. We introduce a novel approach that employs Parameterized Human 3D Reconstruction (PH3DR) to reconstruct 3D human models, thereby effectively eliminating clothing obstructions, seamlessly integrated with an ISANet segmentation network, which has been enhanced by Multi-Scale Fusion Attention (MSFA) module we proposed for facilitating the segmentation of distinct human trunk and limb features (HTLF), capturing body surface asymmetries related to scoliosis. Additionally, we propose a Swin Transformer-enhanced CMU-Pose to extract human skeleton features (HSF), identifying skeletal asymmetries crucial for SS. Finally, we develop a fusion model that integrates the HTLF and HSF, combining surface morphology and skeletal features to improve the precision of SS. The experiments demonstrated that PH3DR and MSFA significantly improved the segmentation and extraction of HTLF, whereas ST-based CMU-Pose substantially enhanced the extraction of HSF. Our final model achieved a comparable F1 (0.895 ±0.014) to the best-performing baseline model, with only 0.79% of the parameters and 1.64% of the FLOPs, achieving 36 FPS-significantly higher than the best-performing baseline model (10 FPS). Moreover, our model outperformed two spine surgeons, one less experienced and the other moderately experienced. With its patient-friendly, privacy-preserving, and easily deployable solution, this approach is particularly well-suited for early SS and routine monitoring.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.