Zhe Wang, Jianping Wu, Mengjun Zheng, Chenchen Geng, Borui Zhen, Wei Zhang, Hui Wu, Zhengyang Xu, Gang Xu, Si Chen, Xiang Li
{"title":"StaPep: An Open-Source Toolkit for Structure Prediction, Feature Extraction, and Rational Design of Hydrocarbon-Stapled Peptides.","authors":"Zhe Wang, Jianping Wu, Mengjun Zheng, Chenchen Geng, Borui Zhen, Wei Zhang, Hui Wu, Zhengyang Xu, Gang Xu, Si Chen, Xiang Li","doi":"10.1021/acs.jcim.4c01718","DOIUrl":null,"url":null,"abstract":"<p><p>All-hydrocarbon stapled peptides, with their covalent side-chain constraints, provide enhanced proteolytic stability and membrane permeability, making them superior to linear peptides. However, tools for extracting structural and physicochemical descriptors to predict the properties of hydrocarbon-stapled peptides are lacking. To address this, we present StaPep, a Python-based toolkit for generating 3D structures and calculating 21 features for hydrocarbon-stapled peptides. StaPep supports peptides containing two non-standard amino acids (norleucine and 2-aminoisobutyric acid) and six non-natural anchoring residues (S3, S5, S8, R3, R5, and R8), with customization options for other non-standard amino acids. We showcase StaPep's utility through three case studies. The first generates 3D structures of these peptides with a mean RMSD of 1.62 ± 0.86, offering essential structural insights for drug design and biological activity prediction. The second develops machine learning models based on calculated molecular features to differentiate between membrane-permeable and non-permeable stapled peptides, achieving an AUC of 0.93. The third constructs regression models to predict the antimicrobial activity of stapled peptides against <i>Escherichia coli</i>, with a Pearson correlation of 0.84. StaPep's pipeline spans data retrieval, structure generation, feature calculation, and machine learning modeling for hydrocarbon-stapled peptides. The source codes and data set are freely available on Github: https://github.com/dahuilangda/stapep_package.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"9361-9373"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01718","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
All-hydrocarbon stapled peptides, with their covalent side-chain constraints, provide enhanced proteolytic stability and membrane permeability, making them superior to linear peptides. However, tools for extracting structural and physicochemical descriptors to predict the properties of hydrocarbon-stapled peptides are lacking. To address this, we present StaPep, a Python-based toolkit for generating 3D structures and calculating 21 features for hydrocarbon-stapled peptides. StaPep supports peptides containing two non-standard amino acids (norleucine and 2-aminoisobutyric acid) and six non-natural anchoring residues (S3, S5, S8, R3, R5, and R8), with customization options for other non-standard amino acids. We showcase StaPep's utility through three case studies. The first generates 3D structures of these peptides with a mean RMSD of 1.62 ± 0.86, offering essential structural insights for drug design and biological activity prediction. The second develops machine learning models based on calculated molecular features to differentiate between membrane-permeable and non-permeable stapled peptides, achieving an AUC of 0.93. The third constructs regression models to predict the antimicrobial activity of stapled peptides against Escherichia coli, with a Pearson correlation of 0.84. StaPep's pipeline spans data retrieval, structure generation, feature calculation, and machine learning modeling for hydrocarbon-stapled peptides. The source codes and data set are freely available on Github: https://github.com/dahuilangda/stapep_package.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.