Hlib Razumkov, Zixuan Jiang, Kheewoong Baek, Inchul You, Qixiang Geng, Katherine A. Donovan, Michelle T. Tang, Rebecca J. Metivier, Nada Mageed, Pooreum Seo, Zhengnian Li, Woong Sub Byun, Stephen M. Hinshaw, Roman C. Sarott, Eric S. Fischer, Nathanael S. Gray
{"title":"Discovery of CRBN-Dependent WEE1 Molecular Glue Degraders from a Multicomponent Combinatorial Library","authors":"Hlib Razumkov, Zixuan Jiang, Kheewoong Baek, Inchul You, Qixiang Geng, Katherine A. Donovan, Michelle T. Tang, Rebecca J. Metivier, Nada Mageed, Pooreum Seo, Zhengnian Li, Woong Sub Byun, Stephen M. Hinshaw, Roman C. Sarott, Eric S. Fischer, Nathanael S. Gray","doi":"10.1021/jacs.4c06127","DOIUrl":null,"url":null,"abstract":"Small molecules promoting protein–protein interactions produce a range of therapeutic outcomes. Molecular glue degraders exemplify this concept due to their compact drug-like structures and ability to engage targets without reliance on existing cognate ligands. While cereblon molecular glue degraders containing glutarimide scaffolds have been approved for treatment of multiple myeloma and acute myeloid leukemia, the design of new therapeutically relevant monovalent degraders remains challenging. We report here an approach to glutarimide-containing molecular glue synthesis using multicomponent reactions as a central modular core-forming step. Screening the resulting library identified HRZ-1 derivatives that target casein kinase 1 α (CK1α) and Wee-like protein kinase (WEE1). Further medicinal chemistry efforts led to identification of selective monovalent WEE1 degraders that provide a potential starting point for the eventual development of a selective chemical degrader probe. The structure of the hit WEE1 degrader complex with CRBN–DDB1 and WEE1 provides a model of the protein–protein interface and ideas to rationalize the observed kinase selectivity. Our findings suggest that modular synthetic routes combined with in-depth structural characterization give access to selective molecular glue degraders and expansion of the CRBN-degradable proteome.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c06127","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Small molecules promoting protein–protein interactions produce a range of therapeutic outcomes. Molecular glue degraders exemplify this concept due to their compact drug-like structures and ability to engage targets without reliance on existing cognate ligands. While cereblon molecular glue degraders containing glutarimide scaffolds have been approved for treatment of multiple myeloma and acute myeloid leukemia, the design of new therapeutically relevant monovalent degraders remains challenging. We report here an approach to glutarimide-containing molecular glue synthesis using multicomponent reactions as a central modular core-forming step. Screening the resulting library identified HRZ-1 derivatives that target casein kinase 1 α (CK1α) and Wee-like protein kinase (WEE1). Further medicinal chemistry efforts led to identification of selective monovalent WEE1 degraders that provide a potential starting point for the eventual development of a selective chemical degrader probe. The structure of the hit WEE1 degrader complex with CRBN–DDB1 and WEE1 provides a model of the protein–protein interface and ideas to rationalize the observed kinase selectivity. Our findings suggest that modular synthetic routes combined with in-depth structural characterization give access to selective molecular glue degraders and expansion of the CRBN-degradable proteome.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.