Time-frequency analysis for the multidimensional Gabor Transform

Q2 Mathematics
Ahmed Chana, Abdellatif Akhlidj
{"title":"Time-frequency analysis for the multidimensional Gabor Transform","authors":"Ahmed Chana,&nbsp;Abdellatif Akhlidj","doi":"10.1007/s11565-024-00558-w","DOIUrl":null,"url":null,"abstract":"<div><p>The main crux of this paper is to introduce a new integral transform called the multidimensional Hankel–Gabor transform and to give some new results related to this transform as Plancherel’s, Parseval’s, inversion and Calderón’s reproducing formulas. Next, we analyse the concentration of this transform on sets of finite measure and we give uncertainty principle for orthonormal sequences and Donoho–Stark’s type uncertainty principle. Last, we introduce a new class of pseudo-differential operator <span>\\({\\mathscr {L}}_{u,v}(\\sigma )\\)</span> called localization operator which depend on a symbol <span>\\(\\sigma \\)</span> and two functions <i>u</i> and <i>v</i>, we give a criteria in terms of the symbol <span>\\(\\sigma \\)</span> for its boundedness and compactness, we also show that this operator belongs to the Schatten-Von Neumann classes <span>\\(S^p\\)</span> for all <span>\\(p \\in [1; +\\infty ]\\)</span> and we give a trace formula.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00558-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The main crux of this paper is to introduce a new integral transform called the multidimensional Hankel–Gabor transform and to give some new results related to this transform as Plancherel’s, Parseval’s, inversion and Calderón’s reproducing formulas. Next, we analyse the concentration of this transform on sets of finite measure and we give uncertainty principle for orthonormal sequences and Donoho–Stark’s type uncertainty principle. Last, we introduce a new class of pseudo-differential operator \({\mathscr {L}}_{u,v}(\sigma )\) called localization operator which depend on a symbol \(\sigma \) and two functions u and v, we give a criteria in terms of the symbol \(\sigma \) for its boundedness and compactness, we also show that this operator belongs to the Schatten-Von Neumann classes \(S^p\) for all \(p \in [1; +\infty ]\) and we give a trace formula.

多维 Gabor 变换的时频分析
本文的主要内容是介绍一种新的积分变换,即多维 Hankel-Gabor 变换,并给出与该变换相关的一些新结果,如 Plancherel 公式、Parseval 公式、反转公式和 Calderón 重现公式。接下来,我们分析了这一变换在有限度量集合上的集中性,并给出了正交序列的不确定性原理和多诺霍-斯塔克式不确定性原理。最后,我们引入了一类新的伪微分算子 \({\mathscr {L}}_{u,v}(\sigma )\) ,称为本地化算子,它依赖于一个符号 \(\sigma \) 和两个函数 u 和 v、我们用符号 ( (sigma) )给出了一个关于它的有界性和紧凑性的标准,我们还证明了这个算子属于 Schatten-Von Neumann 类 (S^p\) ,对于所有 (p \ in [1;+infty ]),并且我们给出了一个迹公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信