{"title":"Epidemic and unemployment interplay through bi-level multi delayed mathematical model","authors":"Akanksha Rajpal , Sumit Kaur Bhatia , Shashank Goel , Sanyam Tyagi , Praveen Kumar","doi":"10.1016/j.matcom.2024.10.027","DOIUrl":null,"url":null,"abstract":"<div><div>An epidemic causes significant financial and economic losses in addition to having negative health effects that result in fatalities.Unemployment is one of the key macroeconomic challenges that governments around the world experience when an epidemic occurs.We have presented a bi-level multi-delay model of epidemics and unemployment to understand and help in alleviating the problem of unemployment while protecting the economy during an epidemic.The epidemic model is the top level of this bi-level mathematical model, and the unemployment model is the lower level.Additionally, the delay in the effect of infection on the unemployed population and the delay in the effect of epidemic-related fatalities on both the employed and unemployed have been taken into consideration.Two equilibrium points, infection-free and interior equilibrium points, have been found.We have obtained the basic reproduction number using the Next Generation Matrix (NGM) methodology.We have also established linear stability analysis around the infection-free and interior equilibrium points, as well as properties of Hopf bifurcation and Lyapunov stability analysis around the interior equilibrium point.Finally, we have conducted numerical simulations to validate the results of our analysis.A time frame for the delays to maintain the system’s stability has been obtained, or else it will adopt instability and it will become very challenging to control unemployment.We propose that the governments implement lockdowns to restrict public social interactions in order to lower the infection rate.We have demonstrated that in order for lockdown measures to effectively reduce infections without driving up unemployment, lowering the incidence of infection-related mortality is essential.It is suggested that adequate and timely treatment be provided in order to control infection-induced mortality.In order to prevent unemployment and infection, it is also suggested that companies offer their employees the chance to work from home. To demonstrate the applicability of our work, we have employed model calibration to fit our model to the real data of COVID-19 impacted people in India, as well as an investigation of calibrated model’s dynamics due to delays has been done.This research will help tackle the serious problem of unemployment during an epidemic, which will spur general economic expansion.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"229 ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004269","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
An epidemic causes significant financial and economic losses in addition to having negative health effects that result in fatalities.Unemployment is one of the key macroeconomic challenges that governments around the world experience when an epidemic occurs.We have presented a bi-level multi-delay model of epidemics and unemployment to understand and help in alleviating the problem of unemployment while protecting the economy during an epidemic.The epidemic model is the top level of this bi-level mathematical model, and the unemployment model is the lower level.Additionally, the delay in the effect of infection on the unemployed population and the delay in the effect of epidemic-related fatalities on both the employed and unemployed have been taken into consideration.Two equilibrium points, infection-free and interior equilibrium points, have been found.We have obtained the basic reproduction number using the Next Generation Matrix (NGM) methodology.We have also established linear stability analysis around the infection-free and interior equilibrium points, as well as properties of Hopf bifurcation and Lyapunov stability analysis around the interior equilibrium point.Finally, we have conducted numerical simulations to validate the results of our analysis.A time frame for the delays to maintain the system’s stability has been obtained, or else it will adopt instability and it will become very challenging to control unemployment.We propose that the governments implement lockdowns to restrict public social interactions in order to lower the infection rate.We have demonstrated that in order for lockdown measures to effectively reduce infections without driving up unemployment, lowering the incidence of infection-related mortality is essential.It is suggested that adequate and timely treatment be provided in order to control infection-induced mortality.In order to prevent unemployment and infection, it is also suggested that companies offer their employees the chance to work from home. To demonstrate the applicability of our work, we have employed model calibration to fit our model to the real data of COVID-19 impacted people in India, as well as an investigation of calibrated model’s dynamics due to delays has been done.This research will help tackle the serious problem of unemployment during an epidemic, which will spur general economic expansion.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.