Numerical solution of nonlinear periodic optimal control problems using a Fourier integral pseudospectral method

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kareem T. Elgindy
{"title":"Numerical solution of nonlinear periodic optimal control problems using a Fourier integral pseudospectral method","authors":"Kareem T. Elgindy","doi":"10.1016/j.jprocont.2024.103326","DOIUrl":null,"url":null,"abstract":"<div><div>Many real-world systems exhibit cyclical behavior and nonlinear dynamics. Optimal control theory provides a framework for determining the best periodic control strategies for such systems. These strategies achieve the desired goals while minimizing the costs, energy use, or other relevant metrics. This study addresses this challenge by introducing the Fourier integral pseudospectral (FIPS) method. This method is applicable to a general class of nonlinear periodic process control problems with equality and/or inequality constraints, assuming sufficiently smooth solutions. The FIPS method performs collocation of the problem’s integral form at an equidistant set of nodes. Furthermore, it utilizes highly accurate Fourier integration matrices (FIMs) to approximate all necessary integrals. This approach transforms the original problem into a nonlinear programming problem (NLP) with algebraic constraints. We employed a direct numerical optimization method to solve this NLP effectively. This study establishes rigorous convergence properties and derives error estimates for the Fourier series, interpolants, and quadratures employed within the context of process control applications, focusing on smooth and continuous periodic functions. Finally, the accuracy and efficiency of the FIPS method are demonstrated through two illustrative nonlinear process-control problems.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424001665","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Many real-world systems exhibit cyclical behavior and nonlinear dynamics. Optimal control theory provides a framework for determining the best periodic control strategies for such systems. These strategies achieve the desired goals while minimizing the costs, energy use, or other relevant metrics. This study addresses this challenge by introducing the Fourier integral pseudospectral (FIPS) method. This method is applicable to a general class of nonlinear periodic process control problems with equality and/or inequality constraints, assuming sufficiently smooth solutions. The FIPS method performs collocation of the problem’s integral form at an equidistant set of nodes. Furthermore, it utilizes highly accurate Fourier integration matrices (FIMs) to approximate all necessary integrals. This approach transforms the original problem into a nonlinear programming problem (NLP) with algebraic constraints. We employed a direct numerical optimization method to solve this NLP effectively. This study establishes rigorous convergence properties and derives error estimates for the Fourier series, interpolants, and quadratures employed within the context of process control applications, focusing on smooth and continuous periodic functions. Finally, the accuracy and efficiency of the FIPS method are demonstrated through two illustrative nonlinear process-control problems.
用傅立叶积分伪谱法数值求解非线性周期优化控制问题
现实世界中的许多系统都表现出周期性行为和非线性动态。最优控制理论为确定此类系统的最佳周期控制策略提供了一个框架。这些策略既能实现预期目标,又能最大限度地降低成本、能源消耗或其他相关指标。本研究通过引入傅立叶积分伪谱(FIPS)方法来应对这一挑战。该方法适用于具有相等和/或不等式约束条件的一般非线性周期过程控制问题,并假定有足够平滑的解。FIPS 方法在一组等距节点处对问题的积分形式进行配位。此外,它还利用高精度的傅立叶积分矩阵(FIM)来逼近所有必要的积分。这种方法将原始问题转化为具有代数约束条件的非线性编程问题(NLP)。我们采用了一种直接数值优化方法来有效求解该 NLP。本研究建立了严格的收敛特性,并推导出在过程控制应用中使用的傅里叶级数、内插值和二次函数的误差估计,重点关注平滑和连续的周期函数。最后,通过两个示例性非线性过程控制问题证明了 FIPS 方法的准确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信