An asymptotic-preserving and exactly mass-conservative semi-implicit scheme for weakly compressible flows based on compatible finite elements

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
E. Zampa , M. Dumbser
{"title":"An asymptotic-preserving and exactly mass-conservative semi-implicit scheme for weakly compressible flows based on compatible finite elements","authors":"E. Zampa ,&nbsp;M. Dumbser","doi":"10.1016/j.jcp.2024.113551","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel asymptotic-preserving semi-implicit finite element method for weakly compressible and incompressible flows based on compatible finite element spaces. The momentum is sought in an <span><math><mi>H</mi><mo>(</mo><mrow><mi>div</mi></mrow><mo>)</mo></math></span>-conforming space, ensuring exact pointwise mass conservation at the discrete level. We use an explicit discontinuous Galerkin-based discretization for the nonlinear convective terms, while treating the pressure and viscous terms implicitly, so that the CFL condition depends only on the fluid velocity. To handle shocks and damp spurious oscillations in the compressible regime, we incorporate an <em>a posteriori</em> limiter that employs artificial viscosity and is based on a discrete maximum principle. By using hybridization, the final algorithm requires solving only symmetric positive definite linear systems. As the Mach number approaches zero and the density remains constant, the method naturally converges to an <span><math><mi>H</mi><mo>(</mo><mrow><mi>div</mi></mrow><mo>)</mo></math></span>-based discretization of the incompressible Navier-Stokes equations in the vorticity-velocity-pressure formulation. Several numerical tests validate the proposed method.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113551"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912400799X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel asymptotic-preserving semi-implicit finite element method for weakly compressible and incompressible flows based on compatible finite element spaces. The momentum is sought in an H(div)-conforming space, ensuring exact pointwise mass conservation at the discrete level. We use an explicit discontinuous Galerkin-based discretization for the nonlinear convective terms, while treating the pressure and viscous terms implicitly, so that the CFL condition depends only on the fluid velocity. To handle shocks and damp spurious oscillations in the compressible regime, we incorporate an a posteriori limiter that employs artificial viscosity and is based on a discrete maximum principle. By using hybridization, the final algorithm requires solving only symmetric positive definite linear systems. As the Mach number approaches zero and the density remains constant, the method naturally converges to an H(div)-based discretization of the incompressible Navier-Stokes equations in the vorticity-velocity-pressure formulation. Several numerical tests validate the proposed method.
基于兼容有限元的弱可压缩流的渐近保留和精确质量守恒半隐式方案
我们以兼容有限元空间为基础,针对弱可压缩和不可压缩流动提出了一种新颖的渐近保全半隐式有限元方法。动量在 H(div)-conforming 空间中寻找,确保离散水平上的精确点质量守恒。对于非线性对流项,我们采用基于非连续 Galerkin 的显式离散化方法,同时隐式处理压力和粘性项,因此 CFL 条件只取决于流体速度。为了处理冲击和抑制可压缩状态下的虚假振荡,我们采用了基于离散最大值原理的人工粘性后验限制器。通过使用杂化技术,最终算法只需求解对称正定线性系统。当马赫数趋近于零且密度保持不变时,该方法会自然收敛到基于 H(div)的不可压缩纳维-斯托克斯方程的离散化涡旋-速度-压力公式。几个数值测试验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信