IGA-Graph-Net: Isogeometric analysis-reuse method based on graph neural networks for topology-consistent models

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Gang Xu , Jin Xie , Weizhen Zhong , Masahiro Toyoura , Ran Ling , Jinlan Xu , Renshu Gu , Charlie C.L. Wang , Timon Rabczuk
{"title":"IGA-Graph-Net: Isogeometric analysis-reuse method based on graph neural networks for topology-consistent models","authors":"Gang Xu ,&nbsp;Jin Xie ,&nbsp;Weizhen Zhong ,&nbsp;Masahiro Toyoura ,&nbsp;Ran Ling ,&nbsp;Jinlan Xu ,&nbsp;Renshu Gu ,&nbsp;Charlie C.L. Wang ,&nbsp;Timon Rabczuk","doi":"10.1016/j.jcp.2024.113544","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel isogeometric analysis-reuse framework called IGA-Graph-Net, which combines <em>Graph Neural Networks</em> with <em>Isogeometric Analysis</em> to overcome the limitations of Convolutional Neural Networks when dealing with B-spline data. Our network architecture incorporates ResNetV2 and PointTransformer for enhanced performance. We transformed the dataset creation process from using <em>Convolutional Neural Networks</em> to <em>Graph Neural Networks</em>. Additionally, we proposed a new loss function tailored for Dirichlet boundary conditions and enriched the input features. Several examples are presented to demonstrate the effectiveness of the proposed framework. In terms of accuracy when tested on the same set of <em>partial differential equation</em> data, our framework demonstrates significant improvements compared to the reuse method based on Convolutional Neural Networks for Isogeometric Analysis on topology-consistent geometries with complex boundaries.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113544"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007927","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel isogeometric analysis-reuse framework called IGA-Graph-Net, which combines Graph Neural Networks with Isogeometric Analysis to overcome the limitations of Convolutional Neural Networks when dealing with B-spline data. Our network architecture incorporates ResNetV2 and PointTransformer for enhanced performance. We transformed the dataset creation process from using Convolutional Neural Networks to Graph Neural Networks. Additionally, we proposed a new loss function tailored for Dirichlet boundary conditions and enriched the input features. Several examples are presented to demonstrate the effectiveness of the proposed framework. In terms of accuracy when tested on the same set of partial differential equation data, our framework demonstrates significant improvements compared to the reuse method based on Convolutional Neural Networks for Isogeometric Analysis on topology-consistent geometries with complex boundaries.
IGA-Graph-Net:基于拓扑一致性模型图神经网络的等时分析-重复使用方法
本文介绍了一种名为 IGA-Graph-Net 的新颖等距分析复用框架,它将图神经网络与等距分析相结合,克服了卷积神经网络在处理 B-样条数据时的局限性。我们的网络架构结合了 ResNetV2 和 PointTransformer,以提高性能。我们将数据集创建过程从使用卷积神经网络转变为图形神经网络。此外,我们还针对 Dirichlet 边界条件提出了新的损失函数,并丰富了输入特征。我们列举了几个例子来证明所提框架的有效性。在对同一组偏微分方程数据进行测试时,与基于卷积神经网络的等几何分析重用方法相比,我们的框架在具有复杂边界的拓扑一致性几何图形上的准确性有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信