Alessandro Neri , Maria Angela Butturi , Rita Gamberini
{"title":"Sustainable management of electric vehicle battery remanufacturing: A systematic literature review and future directions","authors":"Alessandro Neri , Maria Angela Butturi , Rita Gamberini","doi":"10.1016/j.jmsy.2024.10.006","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing adoption of electric vehicles (EVs) and the corresponding surge in lithium-ion battery (LIB) production have intensified the focus on sustainable end-of-life (EOL) management strategies (i.e., reuse, repurpose, remanufacture, and recycle). This paper presents a systematic literature review of the entire remanufacturing process of LIBs, aiming to offer a cohesive perspective on the approach that reduces the environmental impact of LIB waste by prolonging their lifecycle for reuse in their original EV applications. It reveals major issues from EOL collection to renewed batteries, clustering results into six research streams, and proposes a research agenda to develop integrative, data-driven models that incorporate technical, economic, and environmental considerations. Key findings highlight the need for standardised, non-damaging joining techniques, enhanced safety protocols for disassembly, and scalable cathode re-functionalisation methods. Recommendations include leveraging advanced technologies such as AI, machine learning, IoT, and blockchain to optimise remanufacturing processes and enhance supply chain transparency and efficiency. This comprehensive review aims to foster the development of sustainable remanufacturing practices, contributing to the circular economy and supporting the growth of the EV industry.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"77 ","pages":"Pages 859-874"},"PeriodicalIF":12.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524002310","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing adoption of electric vehicles (EVs) and the corresponding surge in lithium-ion battery (LIB) production have intensified the focus on sustainable end-of-life (EOL) management strategies (i.e., reuse, repurpose, remanufacture, and recycle). This paper presents a systematic literature review of the entire remanufacturing process of LIBs, aiming to offer a cohesive perspective on the approach that reduces the environmental impact of LIB waste by prolonging their lifecycle for reuse in their original EV applications. It reveals major issues from EOL collection to renewed batteries, clustering results into six research streams, and proposes a research agenda to develop integrative, data-driven models that incorporate technical, economic, and environmental considerations. Key findings highlight the need for standardised, non-damaging joining techniques, enhanced safety protocols for disassembly, and scalable cathode re-functionalisation methods. Recommendations include leveraging advanced technologies such as AI, machine learning, IoT, and blockchain to optimise remanufacturing processes and enhance supply chain transparency and efficiency. This comprehensive review aims to foster the development of sustainable remanufacturing practices, contributing to the circular economy and supporting the growth of the EV industry.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.