LMI synchronization conditions for variable fractional-order one-sided Lipschitz chaotic systems with gain fluctuations

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Liping Chen , Chuang Liu , António M. Lopes , Yong Lin , Yingxiao Liu , YangQuan Chen
{"title":"LMI synchronization conditions for variable fractional-order one-sided Lipschitz chaotic systems with gain fluctuations","authors":"Liping Chen ,&nbsp;Chuang Liu ,&nbsp;António M. Lopes ,&nbsp;Yong Lin ,&nbsp;Yingxiao Liu ,&nbsp;YangQuan Chen","doi":"10.1016/j.chaos.2024.115695","DOIUrl":null,"url":null,"abstract":"<div><div>This article addresses the synchronization of general variable fractional-order one-sided Lipschitz chaotic systems with norm-bounded time-varying parametric uncertainty. A non-fragile state feedback control scheme is designed to cope with uncertainties in the controller gain fluctuations, and a sufficient condition for master/slave synchronization and determination of the controller gain is derived and expressed as a linear matrix inequality. The new control approach is applicable to fractional-order Lipschitz chaotic systems as well as to integer-order systems. Additionally, compared with other existing schemes, the method is easier and less costly to implement in real-world applications. Three numerical examples are given to show the performance of the non-fragile control approach for synchronizing practical chaotic systems.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115695"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012475","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This article addresses the synchronization of general variable fractional-order one-sided Lipschitz chaotic systems with norm-bounded time-varying parametric uncertainty. A non-fragile state feedback control scheme is designed to cope with uncertainties in the controller gain fluctuations, and a sufficient condition for master/slave synchronization and determination of the controller gain is derived and expressed as a linear matrix inequality. The new control approach is applicable to fractional-order Lipschitz chaotic systems as well as to integer-order systems. Additionally, compared with other existing schemes, the method is easier and less costly to implement in real-world applications. Three numerical examples are given to show the performance of the non-fragile control approach for synchronizing practical chaotic systems.
具有增益波动的可变分数阶单边 Lipschitz 混沌系统的 LMI 同步条件
本文探讨了具有规范约束时变参数不确定性的一般可变分数阶单边 Lipschitz 混沌系统的同步问题。本文设计了一种非脆弱状态反馈控制方案来应对控制器增益波动的不确定性,并推导出了主/从同步和确定控制器增益的充分条件,用线性矩阵不等式表示。新的控制方法既适用于分数阶 Lipschitz 混沌系统,也适用于整数阶系统。此外,与其他现有方案相比,该方法在实际应用中更容易实现,成本更低。本文给出了三个数值示例,展示了非脆弱控制方法在同步实际混沌系统方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信