{"title":"The Exact Subset MultiCover problem","authors":"Emile Benoist , Guillaume Fertin , Géraldine Jean","doi":"10.1016/j.tcs.2024.114936","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the <span>Exact Subset MultiCover</span> problem (or <span>ESM</span>), which can be seen as an extension of the well-known <span>Set Cover</span> problem. Let <span><math><mo>(</mo><mi>U</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> be a multiset built from set <span><math><mi>U</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></math></span> and function <span><math><mi>f</mi><mo>:</mo><mi>U</mi><mo>→</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. <span>ESM</span> is defined as follows: given <span><math><mo>(</mo><mi>U</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> and a collection <span><math><mi>S</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> of <em>n</em> subsets of <span><math><mi>U</mi></math></span>, is it possible to find a multiset <span><math><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><mi>g</mi><mo>)</mo></math></span> with <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mo>{</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>}</mo></math></span> and <span><math><mi>g</mi><mo>:</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>→</mo><mi>N</mi></math></span>, such that (i) <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>⊆</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for every <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi></math></span>, and (ii) each element of <span><math><mi>U</mi></math></span> appears as many times in <span><math><mo>(</mo><mi>U</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> as in <span><math><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><mi>g</mi><mo>)</mo></math></span>? We study this problem under an algorithmic viewpoint and provide diverse complexity results such as polynomial cases, <span>NP</span>-hardness proofs and <span>FPT</span> algorithms. We also study two variants of <span>ESM</span>: (i) <span>Exclusive Exact Subset MultiCover</span> (<span>EESM</span>), which asks that each element of <span><math><mi>U</mi></math></span> appears in exactly one subset <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>; (ii) <span>Maximum Exclusive Exact Subset MultiCover</span> (<span>Max-EESM</span>), an optimization version of <span>EESM</span>, which asks that a maximum number of elements of <span><math><mi>U</mi></math></span> appear in exactly one subset <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. For both variants, we provide several complexity results; in particular we present a 2-approximation algorithm for <span>Max-EESM</span>, that we prove to be tight. For these three problems, we also provide an Integer Linear Programming (<span>ILP</span>) formulation.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1024 ","pages":"Article 114936"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030439752400553X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the Exact Subset MultiCover problem (or ESM), which can be seen as an extension of the well-known Set Cover problem. Let be a multiset built from set and function . ESM is defined as follows: given and a collection of n subsets of , is it possible to find a multiset with and , such that (i) for every , and (ii) each element of appears as many times in as in ? We study this problem under an algorithmic viewpoint and provide diverse complexity results such as polynomial cases, NP-hardness proofs and FPT algorithms. We also study two variants of ESM: (i) Exclusive Exact Subset MultiCover (EESM), which asks that each element of appears in exactly one subset of ; (ii) Maximum Exclusive Exact Subset MultiCover (Max-EESM), an optimization version of EESM, which asks that a maximum number of elements of appear in exactly one subset of . For both variants, we provide several complexity results; in particular we present a 2-approximation algorithm for Max-EESM, that we prove to be tight. For these three problems, we also provide an Integer Linear Programming (ILP) formulation.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.