The Exact Subset MultiCover problem

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Emile Benoist , Guillaume Fertin , Géraldine Jean
{"title":"The Exact Subset MultiCover problem","authors":"Emile Benoist ,&nbsp;Guillaume Fertin ,&nbsp;Géraldine Jean","doi":"10.1016/j.tcs.2024.114936","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the <span>Exact Subset MultiCover</span> problem (or <span>ESM</span>), which can be seen as an extension of the well-known <span>Set Cover</span> problem. Let <span><math><mo>(</mo><mi>U</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> be a multiset built from set <span><math><mi>U</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></math></span> and function <span><math><mi>f</mi><mo>:</mo><mi>U</mi><mo>→</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. <span>ESM</span> is defined as follows: given <span><math><mo>(</mo><mi>U</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> and a collection <span><math><mi>S</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> of <em>n</em> subsets of <span><math><mi>U</mi></math></span>, is it possible to find a multiset <span><math><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><mi>g</mi><mo>)</mo></math></span> with <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mo>{</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>}</mo></math></span> and <span><math><mi>g</mi><mo>:</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>→</mo><mi>N</mi></math></span>, such that (i) <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>⊆</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for every <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi></math></span>, and (ii) each element of <span><math><mi>U</mi></math></span> appears as many times in <span><math><mo>(</mo><mi>U</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> as in <span><math><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><mi>g</mi><mo>)</mo></math></span>? We study this problem under an algorithmic viewpoint and provide diverse complexity results such as polynomial cases, <span>NP</span>-hardness proofs and <span>FPT</span> algorithms. We also study two variants of <span>ESM</span>: (i) <span>Exclusive Exact Subset MultiCover</span> (<span>EESM</span>), which asks that each element of <span><math><mi>U</mi></math></span> appears in exactly one subset <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>; (ii) <span>Maximum Exclusive Exact Subset MultiCover</span> (<span>Max-EESM</span>), an optimization version of <span>EESM</span>, which asks that a maximum number of elements of <span><math><mi>U</mi></math></span> appear in exactly one subset <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. For both variants, we provide several complexity results; in particular we present a 2-approximation algorithm for <span>Max-EESM</span>, that we prove to be tight. For these three problems, we also provide an Integer Linear Programming (<span>ILP</span>) formulation.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1024 ","pages":"Article 114936"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030439752400553X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the Exact Subset MultiCover problem (or ESM), which can be seen as an extension of the well-known Set Cover problem. Let (U,f) be a multiset built from set U={e1,e2,,em} and function f:UN. ESM is defined as follows: given (U,f) and a collection S={S1,S2,,Sn} of n subsets of U, is it possible to find a multiset (S,g) with S={S1,S2,,Sn} and g:SN, such that (i) SiSi for every 1in, and (ii) each element of U appears as many times in (U,f) as in (S,g)? We study this problem under an algorithmic viewpoint and provide diverse complexity results such as polynomial cases, NP-hardness proofs and FPT algorithms. We also study two variants of ESM: (i) Exclusive Exact Subset MultiCover (EESM), which asks that each element of U appears in exactly one subset Si of S; (ii) Maximum Exclusive Exact Subset MultiCover (Max-EESM), an optimization version of EESM, which asks that a maximum number of elements of U appear in exactly one subset Si of S. For both variants, we provide several complexity results; in particular we present a 2-approximation algorithm for Max-EESM, that we prove to be tight. For these three problems, we also provide an Integer Linear Programming (ILP) formulation.
精确子集多重覆盖问题
本文研究的是精确子集多覆盖问题(或称 ESM),它可以看作是著名的集合覆盖问题的扩展。设 (U,f) 是由集合 U={e1,e2,...em} 和函数 f:U→N⁎ 构成的多集。ESM 的定义如下:给定(U,f)和由 U 的 n 个子集组成的集合 S={S1,S2,...,Sn},是否可能找到一个多集合(S′,g),其中 S′={S1′,S2′,...,Sn′}和 g:S′→N,使得 (i) Si′⊆Si,且 (ii) U 的每个元素在 (U,f) 中出现的次数与在 (S′,g)中出现的次数一样多?我们从算法的角度研究了这个问题,并提供了多种复杂性结果,如多项式情况、NP-hardness 证明和 FPT 算法。我们还研究了 EESM 的两个变体:(i) Exclusive Exact Subset MultiCover (ESM),要求 U 的每个元素都恰好出现在 S′ 的一个子集 Si′中;(ii) Maximum Exclusive Exact Subset MultiCover (Max-EESM),这是 EESM 的优化版本,要求 U 的最大数量的元素恰好出现在 S′ 的一个子集 Si′中。对于这两个变体,我们都提供了一些复杂度结果;特别是,我们提出了一个最大 EESM 的 2 近似算法,并证明了它的严密性。对于这三个问题,我们还提供了整数线性规划(ILP)公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信