{"title":"Accelerating computation: A pairwise fitting technique for multivariate probit models","authors":"Margaux Delporte , Geert Verbeke , Steffen Fieuws , Geert Molenberghs","doi":"10.1016/j.csda.2024.108082","DOIUrl":null,"url":null,"abstract":"<div><div>Fitting multivariate probit models via maximum likelihood presents considerable computational challenges, particularly in terms of computation time and convergence difficulties, even for small numbers of responses. These issues are exacerbated when dealing with ordinal data. An efficient computational approach is introduced, based on a pairwise fitting technique within a pseudo-likelihood framework. This methodology is applied to clinical case studies, specifically using a trivariate probit model. Additionally, the correlation structure among outcomes is allowed to depend on covariates, enhancing both the flexibility and interpretability of the model. By way of simulation and real data applications, the proposed approach demonstrates superior computational efficiency as the dimension of the outcome vector increases. The method's ability to capture covariate-dependent correlations makes it particularly useful in medical research, where understanding complex associations among health outcomes is of scientific importance.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"203 ","pages":"Article 108082"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016794732400166X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Fitting multivariate probit models via maximum likelihood presents considerable computational challenges, particularly in terms of computation time and convergence difficulties, even for small numbers of responses. These issues are exacerbated when dealing with ordinal data. An efficient computational approach is introduced, based on a pairwise fitting technique within a pseudo-likelihood framework. This methodology is applied to clinical case studies, specifically using a trivariate probit model. Additionally, the correlation structure among outcomes is allowed to depend on covariates, enhancing both the flexibility and interpretability of the model. By way of simulation and real data applications, the proposed approach demonstrates superior computational efficiency as the dimension of the outcome vector increases. The method's ability to capture covariate-dependent correlations makes it particularly useful in medical research, where understanding complex associations among health outcomes is of scientific importance.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]