Acoustic structure inverse design and optimization using deep learning

IF 4.3 2区 工程技术 Q1 ACOUSTICS
Xuecong Sun , Yuzhen Yang , Han Jia , Han Zhao , Yafeng Bi , Zhaoyong Sun , Jun Yang
{"title":"Acoustic structure inverse design and optimization using deep learning","authors":"Xuecong Sun ,&nbsp;Yuzhen Yang ,&nbsp;Han Jia ,&nbsp;Han Zhao ,&nbsp;Yafeng Bi ,&nbsp;Zhaoyong Sun ,&nbsp;Jun Yang","doi":"10.1016/j.jsv.2024.118789","DOIUrl":null,"url":null,"abstract":"<div><div>From ancient to modern times, acoustic structures have been employed to manage the spread of acoustic waves. Nevertheless, designing these structures traditionally remains a laborious and computationally intensive iterative process. Recognizing that complex acoustic systems can be effectively analyzed using the lumped-parameter method, we introduce a deep learning model that learns the correlation between the equivalent electrical parameters and the acoustic properties of these structures. As an illustration, we consider the design of multi-order Helmholtz resonators, showing experimentally that our model can predict structures with high precision that closely align with the specified design criteria. Furthermore, our model can seek multiple solutions in conjunction with dimensionality reduction algorithms and support evolutionary algorithms in optimization tasks. Compared to traditional numerical methods, our approach offers greater efficiency, flexibility, and universality. The designed acoustic structures hold broad potential for applications including speech enhancement, sound absorption, and insulation.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"596 ","pages":"Article 118789"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24005510","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

From ancient to modern times, acoustic structures have been employed to manage the spread of acoustic waves. Nevertheless, designing these structures traditionally remains a laborious and computationally intensive iterative process. Recognizing that complex acoustic systems can be effectively analyzed using the lumped-parameter method, we introduce a deep learning model that learns the correlation between the equivalent electrical parameters and the acoustic properties of these structures. As an illustration, we consider the design of multi-order Helmholtz resonators, showing experimentally that our model can predict structures with high precision that closely align with the specified design criteria. Furthermore, our model can seek multiple solutions in conjunction with dimensionality reduction algorithms and support evolutionary algorithms in optimization tasks. Compared to traditional numerical methods, our approach offers greater efficiency, flexibility, and universality. The designed acoustic structures hold broad potential for applications including speech enhancement, sound absorption, and insulation.
利用深度学习进行声学结构逆向设计和优化
从古到今,声学结构一直被用来管理声波的传播。然而,设计这些结构传统上仍是一个费力且计算密集的迭代过程。我们认识到,复杂的声学系统可以使用整块参数法进行有效分析,因此我们引入了一种深度学习模型,该模型可以学习这些结构的等效电气参数和声学特性之间的相关性。例如,我们考虑了多阶亥姆霍兹谐振器的设计,实验表明我们的模型可以高精度地预测与指定设计标准密切相关的结构。此外,我们的模型还能结合降维算法寻求多个解决方案,并在优化任务中支持进化算法。与传统的数值方法相比,我们的方法具有更高的效率、灵活性和通用性。所设计的声学结构在语音增强、吸音和隔音等方面具有广泛的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信