Machine learning and deep learning-based landslide susceptibility mapping using geospatial techniques in Wayanad, Kerala state, India

Lokesh P , Madhesh C , Aneesh Mathew , Padala Raja Shekar
{"title":"Machine learning and deep learning-based landslide susceptibility mapping using geospatial techniques in Wayanad, Kerala state, India","authors":"Lokesh P ,&nbsp;Madhesh C ,&nbsp;Aneesh Mathew ,&nbsp;Padala Raja Shekar","doi":"10.1016/j.hydres.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>Landslide susceptibility mapping is vital for disaster management and sustainable land-use planning. This research was conducted in Wayanad, Kerala, India, to identify landslide susceptible zones. The study used large geospatial datasets, such as elevation, slope, aspect, curvature, stream power index, topographic wetness index, land use and land cover, rainfall, flow accumulation, geology, and geomorphology. It is followed by the application of various machine learning and deep learning models such as the support vector machine, artificial neural networks, logistic regression, random forest, gradient boosting machine, recurrent neural networks long short-term memory, and deep neural network models to map the landslide susceptible zones. The model was trained and validated using the landslide inventory map, which contains 298 sites of landslides. The random forest model, with 97 % accuracy, performed the best. It is possible to effectively mitigate landslides and plan long-term land use by identifying hazardous zones within the study region.</div></div>","PeriodicalId":100615,"journal":{"name":"HydroResearch","volume":"8 ","pages":"Pages 113-126"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HydroResearch","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589757824000386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Landslide susceptibility mapping is vital for disaster management and sustainable land-use planning. This research was conducted in Wayanad, Kerala, India, to identify landslide susceptible zones. The study used large geospatial datasets, such as elevation, slope, aspect, curvature, stream power index, topographic wetness index, land use and land cover, rainfall, flow accumulation, geology, and geomorphology. It is followed by the application of various machine learning and deep learning models such as the support vector machine, artificial neural networks, logistic regression, random forest, gradient boosting machine, recurrent neural networks long short-term memory, and deep neural network models to map the landslide susceptible zones. The model was trained and validated using the landslide inventory map, which contains 298 sites of landslides. The random forest model, with 97 % accuracy, performed the best. It is possible to effectively mitigate landslides and plan long-term land use by identifying hazardous zones within the study region.
在印度喀拉拉邦 Wayanad 利用地理空间技术绘制基于机器学习和深度学习的滑坡易发性地图
绘制滑坡易发区地图对于灾害管理和可持续土地利用规划至关重要。这项研究在印度喀拉拉邦的 Wayanad 进行,旨在确定滑坡易发区。该研究使用了大量地理空间数据集,如海拔、坡度、坡向、曲率、溪流动力指数、地形湿润指数、土地利用和土地覆盖、降雨、流量累积、地质和地貌。随后,应用各种机器学习和深度学习模型,如支持向量机、人工神经网络、逻辑回归、随机森林、梯度提升机、循环神经网络长短期记忆和深度神经网络模型,绘制滑坡易发区地图。该模型利用包含 298 个滑坡点的滑坡清查图进行了训练和验证。随机森林模型的准确率为 97%,表现最佳。通过识别研究区域内的危险区,可以有效缓解滑坡并规划长期土地利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信