Lokesh P , Madhesh C , Aneesh Mathew , Padala Raja Shekar
{"title":"Machine learning and deep learning-based landslide susceptibility mapping using geospatial techniques in Wayanad, Kerala state, India","authors":"Lokesh P , Madhesh C , Aneesh Mathew , Padala Raja Shekar","doi":"10.1016/j.hydres.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>Landslide susceptibility mapping is vital for disaster management and sustainable land-use planning. This research was conducted in Wayanad, Kerala, India, to identify landslide susceptible zones. The study used large geospatial datasets, such as elevation, slope, aspect, curvature, stream power index, topographic wetness index, land use and land cover, rainfall, flow accumulation, geology, and geomorphology. It is followed by the application of various machine learning and deep learning models such as the support vector machine, artificial neural networks, logistic regression, random forest, gradient boosting machine, recurrent neural networks long short-term memory, and deep neural network models to map the landslide susceptible zones. The model was trained and validated using the landslide inventory map, which contains 298 sites of landslides. The random forest model, with 97 % accuracy, performed the best. It is possible to effectively mitigate landslides and plan long-term land use by identifying hazardous zones within the study region.</div></div>","PeriodicalId":100615,"journal":{"name":"HydroResearch","volume":"8 ","pages":"Pages 113-126"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HydroResearch","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589757824000386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Landslide susceptibility mapping is vital for disaster management and sustainable land-use planning. This research was conducted in Wayanad, Kerala, India, to identify landslide susceptible zones. The study used large geospatial datasets, such as elevation, slope, aspect, curvature, stream power index, topographic wetness index, land use and land cover, rainfall, flow accumulation, geology, and geomorphology. It is followed by the application of various machine learning and deep learning models such as the support vector machine, artificial neural networks, logistic regression, random forest, gradient boosting machine, recurrent neural networks long short-term memory, and deep neural network models to map the landslide susceptible zones. The model was trained and validated using the landslide inventory map, which contains 298 sites of landslides. The random forest model, with 97 % accuracy, performed the best. It is possible to effectively mitigate landslides and plan long-term land use by identifying hazardous zones within the study region.