Rameesa D. Syed Mohammed, Lianay Gutierrez Luque and Muriel C. Maurer*,
{"title":"Factor XIII Activation Peptide Residues Play Important Roles in Stability, Activation, and Transglutaminase Activity","authors":"Rameesa D. Syed Mohammed, Lianay Gutierrez Luque and Muriel C. Maurer*, ","doi":"10.1021/acs.biochem.4c0031810.1021/acs.biochem.4c00318","DOIUrl":null,"url":null,"abstract":"<p >A subunit of factor XIII (FXIII-A) contains a unique activation peptide (AP) that protects the catalytic triad and prevents degradation. In plasma, FXIII is activated proteolytically (FXIII-A*) by thrombin and Ca<sup>2+</sup> cleaving AP, while in cytoplasm, it is activated nonproteolytically (FXIII-A°) with increased Ca<sup>2+</sup> concentrations. This study aimed to elucidate the role of individual parts of the FXIII-A AP in protein stability, thrombin activation, and transglutaminase activity. Recombinant FXIII-A AP variants were expressed, and SDS-PAGE was used to monitor thrombin hydrolysis at the AP cleavage sites R37–G38. Transglutaminase activities were assessed by cross-linking lysine mimics to Fbg αC (233–425, glutamine–substrate) and monitoring reactions by mass spectrometry and in-gel fluorescence assays. FXIII-A AP variants, S19P, E23K, and D24V, degraded during purification, indicating their vital role in FXIII-A<sub>2</sub> stability. Mutation of P36 to L36/F36 abolished the proteolytic cleavage of AP and thus prevented activation. FXIII-A N20S and P27L exhibited slower thrombin activation, likely due to the loss of key interdomain H-bonding interactions. Except N20S and P15L/P16L, all activatable FXIII-A* variants (P15L, P16L, S19A, and P27L) showed similar cross-linking activity to WT. By contrast, FXIII-A° P15L, P16L, and P15L/P16L had significantly lower cross-linking activity than FXIII-A° WT, suggesting that loss of these prolines had a greater structural impact. In conclusion, FXIII-A AP residues that play crucial roles in FXIII-A stability, activation, and activity were identified. The interactions between these AP amino acid residues and other domains control the stability and activity of FXIII.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":"63 21","pages":"2830–2841 2830–2841"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00318","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A subunit of factor XIII (FXIII-A) contains a unique activation peptide (AP) that protects the catalytic triad and prevents degradation. In plasma, FXIII is activated proteolytically (FXIII-A*) by thrombin and Ca2+ cleaving AP, while in cytoplasm, it is activated nonproteolytically (FXIII-A°) with increased Ca2+ concentrations. This study aimed to elucidate the role of individual parts of the FXIII-A AP in protein stability, thrombin activation, and transglutaminase activity. Recombinant FXIII-A AP variants were expressed, and SDS-PAGE was used to monitor thrombin hydrolysis at the AP cleavage sites R37–G38. Transglutaminase activities were assessed by cross-linking lysine mimics to Fbg αC (233–425, glutamine–substrate) and monitoring reactions by mass spectrometry and in-gel fluorescence assays. FXIII-A AP variants, S19P, E23K, and D24V, degraded during purification, indicating their vital role in FXIII-A2 stability. Mutation of P36 to L36/F36 abolished the proteolytic cleavage of AP and thus prevented activation. FXIII-A N20S and P27L exhibited slower thrombin activation, likely due to the loss of key interdomain H-bonding interactions. Except N20S and P15L/P16L, all activatable FXIII-A* variants (P15L, P16L, S19A, and P27L) showed similar cross-linking activity to WT. By contrast, FXIII-A° P15L, P16L, and P15L/P16L had significantly lower cross-linking activity than FXIII-A° WT, suggesting that loss of these prolines had a greater structural impact. In conclusion, FXIII-A AP residues that play crucial roles in FXIII-A stability, activation, and activity were identified. The interactions between these AP amino acid residues and other domains control the stability and activity of FXIII.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.