Within-Site Variations in Soil Physicochemical Properties Explained the Spatiality and Cohabitation of Arbuscular Mycorrhizal Fungi in the Roots of Cryptomeria Japonica.
Akotchiffor Kevin Geoffroy Djotan, Norihisa Matsushita, Kenji Fukuda
{"title":"Within-Site Variations in Soil Physicochemical Properties Explained the Spatiality and Cohabitation of Arbuscular Mycorrhizal Fungi in the Roots of Cryptomeria Japonica.","authors":"Akotchiffor Kevin Geoffroy Djotan, Norihisa Matsushita, Kenji Fukuda","doi":"10.1007/s00248-024-02449-1","DOIUrl":null,"url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) live in a community in the roots of host plants. Still, the patterns and factors that drive their spatiality and cohabitation remain uncovered, particularly that of trees in planted forests, which we aimed to clarify in Cryptomeria japonica, a major plantation tree in Japan. We analyzed 65 paired root and soil samples of Cryptomeria japonica trees collected from 11 microsite (MS) plots at two environmentally different forest sites in central Japan and measured soil pH, total phosphorus (TP), C, N, and the carbon-to-nitrogen ratio. Root AMF communities were recovered using Illumina's next-generation amplicon sequencing targeting the small subunit of ribosomal DNA. We detected more than 500 AMF OTUs at each site but only three belonging to Dominikia, Rhizophagus, and Sclerocystis were dominant in the roots of C. japonica, detected each at an average relative abundance higher than 20%. Two showed negatively correlated spatial distributions and different associations with soil pH. Similarly, the physicochemical properties at MSs significantly determined the AMF assemblages in the roots of C. japonica. Dominikia, Rhizophagus, and Sclerocystis coexist in the roots of C. japonica where soil physicochemical properties, particularly pH, determine their spatial dynamic, turnovers, and cohabitation patterns. These findings highlight the importance of simultaneous colonization of plants by multiple AMF.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"136"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534833/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02449-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Arbuscular mycorrhizal fungi (AMF) live in a community in the roots of host plants. Still, the patterns and factors that drive their spatiality and cohabitation remain uncovered, particularly that of trees in planted forests, which we aimed to clarify in Cryptomeria japonica, a major plantation tree in Japan. We analyzed 65 paired root and soil samples of Cryptomeria japonica trees collected from 11 microsite (MS) plots at two environmentally different forest sites in central Japan and measured soil pH, total phosphorus (TP), C, N, and the carbon-to-nitrogen ratio. Root AMF communities were recovered using Illumina's next-generation amplicon sequencing targeting the small subunit of ribosomal DNA. We detected more than 500 AMF OTUs at each site but only three belonging to Dominikia, Rhizophagus, and Sclerocystis were dominant in the roots of C. japonica, detected each at an average relative abundance higher than 20%. Two showed negatively correlated spatial distributions and different associations with soil pH. Similarly, the physicochemical properties at MSs significantly determined the AMF assemblages in the roots of C. japonica. Dominikia, Rhizophagus, and Sclerocystis coexist in the roots of C. japonica where soil physicochemical properties, particularly pH, determine their spatial dynamic, turnovers, and cohabitation patterns. These findings highlight the importance of simultaneous colonization of plants by multiple AMF.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.