Effectiveness of a combination of laccase and green coffee extract on oral malodor: A comparative, randomized, controlled, evaluator-blind, parallel-group trial.
Sylvia L Santos, Caterina Holz, Kimberly L Milleman, Jeffery L Milleman, Wenqian Gu, Luis R Mateo
{"title":"Effectiveness of a combination of laccase and green coffee extract on oral malodor: A comparative, randomized, controlled, evaluator-blind, parallel-group trial.","authors":"Sylvia L Santos, Caterina Holz, Kimberly L Milleman, Jeffery L Milleman, Wenqian Gu, Luis R Mateo","doi":"10.1088/1752-7163/ad8e7c","DOIUrl":null,"url":null,"abstract":"<p><p>Oral malodor negatively impacts a person's quality of life and may affect up to 50% of the population. The aim of this randomized, placebo and no-product controlled, evaluator-blind, proof-of-concept study was to evaluate the effectiveness and safety of the single use of two experimental lozenges containing the laccase enzyme and green coffee extract (with and without flavor) in reducing intrinsic oral malodor. Following 12 to 16 h of avoidance of oral hygiene,156 generally healthy subjects presented at screening and baseline visits with a mean organoleptic odor intensity (OI) score of ≥ 2 and an OralChroma<sup>TM</sup>reading of ≥ 125 parts per billion (ppb) hydrogen sulfide (H2S) gas and were randomly assigned to receive either one of the two experimental lozenges, a placebo lozenge, or no-product. Following the supervised use of the assigned products, subjects' oral malodor was evaluated using OI assessments and OralChroma<sup>TM</sup>measurement for volatile sulfur compounds (VSCs) immediately following product use (approximately 5 min), and at 30 min, 1 h, 2 h, 3 h and 4 h. The two experimental lozenges, with and without flavor, showed significant reductions in OI scores compared with the placebo and no-product groups at all time points (p < 0.001). At 5 minutes post-product use, the experimental lozenges, with and without flavor, were significantly better than the no-product group in reducing the VSCs (p < 0.04). The results of individual VSC components (hydrogen sulfide, methyl mercaptan and dimethyl sulfide) were variable; both experimental lozenges notably reduced hydrogen sulfide and methyl mercaptan levels in most post-use assessments. Four minor adverse events were reported, none of which were directly linked to the product. In conclusion, the experimental lozenges, whether flavored or not, were safe and effective in reducing oral malodor over a span of 4 h, based on organoleptic OI scores.
NCT05950529.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad8e7c","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Oral malodor negatively impacts a person's quality of life and may affect up to 50% of the population. The aim of this randomized, placebo and no-product controlled, evaluator-blind, proof-of-concept study was to evaluate the effectiveness and safety of the single use of two experimental lozenges containing the laccase enzyme and green coffee extract (with and without flavor) in reducing intrinsic oral malodor. Following 12 to 16 h of avoidance of oral hygiene,156 generally healthy subjects presented at screening and baseline visits with a mean organoleptic odor intensity (OI) score of ≥ 2 and an OralChromaTMreading of ≥ 125 parts per billion (ppb) hydrogen sulfide (H2S) gas and were randomly assigned to receive either one of the two experimental lozenges, a placebo lozenge, or no-product. Following the supervised use of the assigned products, subjects' oral malodor was evaluated using OI assessments and OralChromaTMmeasurement for volatile sulfur compounds (VSCs) immediately following product use (approximately 5 min), and at 30 min, 1 h, 2 h, 3 h and 4 h. The two experimental lozenges, with and without flavor, showed significant reductions in OI scores compared with the placebo and no-product groups at all time points (p < 0.001). At 5 minutes post-product use, the experimental lozenges, with and without flavor, were significantly better than the no-product group in reducing the VSCs (p < 0.04). The results of individual VSC components (hydrogen sulfide, methyl mercaptan and dimethyl sulfide) were variable; both experimental lozenges notably reduced hydrogen sulfide and methyl mercaptan levels in most post-use assessments. Four minor adverse events were reported, none of which were directly linked to the product. In conclusion, the experimental lozenges, whether flavored or not, were safe and effective in reducing oral malodor over a span of 4 h, based on organoleptic OI scores.
NCT05950529.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.