Simplified methods for variance estimation in microbiome abundance count data analysis.

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY
Frontiers in Genetics Pub Date : 2024-10-21 eCollection Date: 2024-01-01 DOI:10.3389/fgene.2024.1458851
Yiming Shi, Lili Liu, Jun Chen, Kristine M Wylie, Todd N Wylie, Molly J Stout, Chan Wang, Haixiang Zhang, Ya-Chen T Shih, Xiaoyi Xu, Ai Zhang, Sung Hee Park, Hongmei Jiang, Lei Liu
{"title":"Simplified methods for variance estimation in microbiome abundance count data analysis.","authors":"Yiming Shi, Lili Liu, Jun Chen, Kristine M Wylie, Todd N Wylie, Molly J Stout, Chan Wang, Haixiang Zhang, Ya-Chen T Shih, Xiaoyi Xu, Ai Zhang, Sung Hee Park, Hongmei Jiang, Lei Liu","doi":"10.3389/fgene.2024.1458851","DOIUrl":null,"url":null,"abstract":"<p><p>The complex nature of microbiome data has made the differential abundance analysis challenging. Microbiome abundance counts are often skewed to the right and heteroscedastic (also known as overdispersion), potentially leading to incorrect inferences if not properly addressed. In this paper, we propose a simple yet effective framework to tackle the challenges by integrating Poisson (log-linear) regression with standard error estimation through the Bootstrap method and Sandwich robust estimation. Such standard error estimates are accurate and yield satisfactory inference even if the distributional assumption or the variance structure is incorrect. Our approach is validated through extensive simulation studies, demonstrating its effectiveness in addressing overdispersion and improving inference accuracy. Additionally, we apply our approach to two real datasets collected from the human gut and vagina, respectively, demonstrating the wide applicability of our methods. The results highlight the efficacy of our covariance estimators in addressing the challenges of microbiome data analysis. The corresponding software implementation is publicly available at https://github.com/yimshi/robustestimates.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2024.1458851","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The complex nature of microbiome data has made the differential abundance analysis challenging. Microbiome abundance counts are often skewed to the right and heteroscedastic (also known as overdispersion), potentially leading to incorrect inferences if not properly addressed. In this paper, we propose a simple yet effective framework to tackle the challenges by integrating Poisson (log-linear) regression with standard error estimation through the Bootstrap method and Sandwich robust estimation. Such standard error estimates are accurate and yield satisfactory inference even if the distributional assumption or the variance structure is incorrect. Our approach is validated through extensive simulation studies, demonstrating its effectiveness in addressing overdispersion and improving inference accuracy. Additionally, we apply our approach to two real datasets collected from the human gut and vagina, respectively, demonstrating the wide applicability of our methods. The results highlight the efficacy of our covariance estimators in addressing the challenges of microbiome data analysis. The corresponding software implementation is publicly available at https://github.com/yimshi/robustestimates.

微生物组丰度计数数据分析中方差估计的简化方法。
微生物组数据的复杂性给差异丰度分析带来了挑战。微生物组丰度计数通常向右偏斜且存在异方差(也称为过度离散),如果处理不当,可能会导致不正确的推论。在本文中,我们提出了一个简单而有效的框架,通过 Bootstrap 方法和 Sandwich 鲁棒估计法将泊松(对数线性)回归与标准误差估计结合起来,从而应对这些挑战。即使分布假设或方差结构不正确,这种标准误差估计也是准确的,并能产生令人满意的推论。我们的方法通过大量的模拟研究得到了验证,证明了它在解决过度分散和提高推断准确性方面的有效性。此外,我们还将我们的方法分别应用于从人体肠道和阴道收集的两个真实数据集,证明了我们方法的广泛适用性。结果凸显了我们的协方差估计器在应对微生物组数据分析挑战方面的功效。相应的软件实现可在 https://github.com/yimshi/robustestimates 公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Genetics
Frontiers in Genetics Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍: Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public. The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信