Accuracy of Prospective Assessments of 4 Large Language Model Chatbot Responses to Patient Questions About Emergency Care: Experimental Comparative Study.
Jonathan Yi-Shin Yau, Soheil Saadat, Edmund Hsu, Linda Suk-Ling Murphy, Jennifer S Roh, Jeffrey Suchard, Antonio Tapia, Warren Wiechmann, Mark I Langdorf
{"title":"Accuracy of Prospective Assessments of 4 Large Language Model Chatbot Responses to Patient Questions About Emergency Care: Experimental Comparative Study.","authors":"Jonathan Yi-Shin Yau, Soheil Saadat, Edmund Hsu, Linda Suk-Ling Murphy, Jennifer S Roh, Jeffrey Suchard, Antonio Tapia, Warren Wiechmann, Mark I Langdorf","doi":"10.2196/60291","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent surveys indicate that 48% of consumers actively use generative artificial intelligence (AI) for health-related inquiries. Despite widespread adoption and the potential to improve health care access, scant research examines the performance of AI chatbot responses regarding emergency care advice.</p><p><strong>Objective: </strong>We assessed the quality of AI chatbot responses to common emergency care questions. We sought to determine qualitative differences in responses from 4 free-access AI chatbots, for 10 different serious and benign emergency conditions.</p><p><strong>Methods: </strong>We created 10 emergency care questions that we fed into the free-access versions of ChatGPT 3.5 (OpenAI), Google Bard, Bing AI Chat (Microsoft), and Claude AI (Anthropic) on November 26, 2023. Each response was graded by 5 board-certified emergency medicine (EM) faculty for 8 domains of percentage accuracy, presence of dangerous information, factual accuracy, clarity, completeness, understandability, source reliability, and source relevancy. We determined the correct, complete response to the 10 questions from reputable and scholarly emergency medical references. These were compiled by an EM resident physician. For the readability of the chatbot responses, we used the Flesch-Kincaid Grade Level of each response from readability statistics embedded in Microsoft Word. Differences between chatbots were determined by the chi-square test.</p><p><strong>Results: </strong>Each of the 4 chatbots' responses to the 10 clinical questions were scored across 8 domains by 5 EM faculty, for 400 assessments for each chatbot. Together, the 4 chatbots had the best performance in clarity and understandability (both 85%), intermediate performance in accuracy and completeness (both 50%), and poor performance (10%) for source relevance and reliability (mostly unreported). Chatbots contained dangerous information in 5% to 35% of responses, with no statistical difference between chatbots on this metric (P=.24). ChatGPT, Google Bard, and Claud AI had similar performances across 6 out of 8 domains. Only Bing AI performed better with more identified or relevant sources (40%; the others had 0%-10%). Flesch-Kincaid Reading level was 7.7-8.9 grade for all chatbots, except ChatGPT at 10.8, which were all too advanced for average emergency patients. Responses included both dangerous (eg, starting cardiopulmonary resuscitation with no pulse check) and generally inappropriate advice (eg, loosening the collar to improve breathing without evidence of airway compromise).</p><p><strong>Conclusions: </strong>AI chatbots, though ubiquitous, have significant deficiencies in EM patient advice, despite relatively consistent performance. Information for when to seek urgent or emergent care is frequently incomplete and inaccurate, and patients may be unaware of misinformation. Sources are not generally provided. Patients who use AI to guide health care decisions assume potential risks. AI chatbots for health should be subject to further research, refinement, and regulation. We strongly recommend proper medical consultation to prevent potential adverse outcomes.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"26 ","pages":"e60291"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/60291","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Recent surveys indicate that 48% of consumers actively use generative artificial intelligence (AI) for health-related inquiries. Despite widespread adoption and the potential to improve health care access, scant research examines the performance of AI chatbot responses regarding emergency care advice.
Objective: We assessed the quality of AI chatbot responses to common emergency care questions. We sought to determine qualitative differences in responses from 4 free-access AI chatbots, for 10 different serious and benign emergency conditions.
Methods: We created 10 emergency care questions that we fed into the free-access versions of ChatGPT 3.5 (OpenAI), Google Bard, Bing AI Chat (Microsoft), and Claude AI (Anthropic) on November 26, 2023. Each response was graded by 5 board-certified emergency medicine (EM) faculty for 8 domains of percentage accuracy, presence of dangerous information, factual accuracy, clarity, completeness, understandability, source reliability, and source relevancy. We determined the correct, complete response to the 10 questions from reputable and scholarly emergency medical references. These were compiled by an EM resident physician. For the readability of the chatbot responses, we used the Flesch-Kincaid Grade Level of each response from readability statistics embedded in Microsoft Word. Differences between chatbots were determined by the chi-square test.
Results: Each of the 4 chatbots' responses to the 10 clinical questions were scored across 8 domains by 5 EM faculty, for 400 assessments for each chatbot. Together, the 4 chatbots had the best performance in clarity and understandability (both 85%), intermediate performance in accuracy and completeness (both 50%), and poor performance (10%) for source relevance and reliability (mostly unreported). Chatbots contained dangerous information in 5% to 35% of responses, with no statistical difference between chatbots on this metric (P=.24). ChatGPT, Google Bard, and Claud AI had similar performances across 6 out of 8 domains. Only Bing AI performed better with more identified or relevant sources (40%; the others had 0%-10%). Flesch-Kincaid Reading level was 7.7-8.9 grade for all chatbots, except ChatGPT at 10.8, which were all too advanced for average emergency patients. Responses included both dangerous (eg, starting cardiopulmonary resuscitation with no pulse check) and generally inappropriate advice (eg, loosening the collar to improve breathing without evidence of airway compromise).
Conclusions: AI chatbots, though ubiquitous, have significant deficiencies in EM patient advice, despite relatively consistent performance. Information for when to seek urgent or emergent care is frequently incomplete and inaccurate, and patients may be unaware of misinformation. Sources are not generally provided. Patients who use AI to guide health care decisions assume potential risks. AI chatbots for health should be subject to further research, refinement, and regulation. We strongly recommend proper medical consultation to prevent potential adverse outcomes.
期刊介绍:
The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades.
As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor.
Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.