Enhanced Na-Ion Electrochemical Performance through Cu Doping-Mediated Sb2Se3 Phase Transformation into CuSbSe2 with Improved Kinetics.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Shah Jahan Ul Islam, Kowsar Majid, Malik Wahid
{"title":"Enhanced Na-Ion Electrochemical Performance through Cu Doping-Mediated Sb<sub>2</sub>Se<sub>3</sub> Phase Transformation into CuSbSe<sub>2</sub> with Improved Kinetics.","authors":"Shah Jahan Ul Islam, Kowsar Majid, Malik Wahid","doi":"10.1002/cphc.202400793","DOIUrl":null,"url":null,"abstract":"<p><p>This work investigates the influence of structural and electronic modification on the electrochemical performance of conversion and alloying materials. The CuSbSe<sub>2</sub>, a promising 2D layered conversion, and alloying material is being investigated with references to parent pristine Sb<sub>2</sub>Se<sub>3</sub> and a doped version of later Sn<sub>0.2</sub>Sb<sub>1.8</sub>Se<sub>3</sub> for their sodium-ion battery performance. The CuSbSe<sub>2</sub> with layered structure is well known to accommodate lattice distortions via inter-layer movement, potentially mitigating distortions brought about by the Alkali ion (Na in this case) insertion. In contrast, the parent conversion-cum-alloying material Sb<sub>2</sub>Se<sub>3</sub> with its one-dimensional crystal structure leads to structural disintegration during battery operation. The Sn-doped analog, Sn<sub>0.2</sub>Sb<sub>1.8</sub>Se<sub>3</sub>, comparatively exhibits enhanced kinetics owing to the reduced long-range order. The 2D layered, CuSbSe<sub>2</sub> despite exhibiting 2D long-range order exhibits superior electrochemical performance owing to the favorable electronic and structural features. The CuSbSe<sub>2</sub> exhibits a reversible capacity of 881 mAh g<sup>-1</sup> compared to 516 mAh g<sup>-1</sup> for Sn<sub>0.2</sub>Sb<sub>1.8</sub>Se<sub>3</sub> and 429 mAh g<sup>-1</sup> for Sb<sub>2</sub>Se<sub>3</sub>, with an improved Coulombic efficiency as well. The transient electrochemical investigations of Electrochemical Impedance Spectroscopy (EIS) and Galvanostatic intermittent titration techniques (GITT) reveal that better performance exhibited by CuSbSe<sub>2</sub> may well be attributed to kinetics owing to enhanced diffusion coefficients in the intercalation and conversion regime.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400793"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400793","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the influence of structural and electronic modification on the electrochemical performance of conversion and alloying materials. The CuSbSe2, a promising 2D layered conversion, and alloying material is being investigated with references to parent pristine Sb2Se3 and a doped version of later Sn0.2Sb1.8Se3 for their sodium-ion battery performance. The CuSbSe2 with layered structure is well known to accommodate lattice distortions via inter-layer movement, potentially mitigating distortions brought about by the Alkali ion (Na in this case) insertion. In contrast, the parent conversion-cum-alloying material Sb2Se3 with its one-dimensional crystal structure leads to structural disintegration during battery operation. The Sn-doped analog, Sn0.2Sb1.8Se3, comparatively exhibits enhanced kinetics owing to the reduced long-range order. The 2D layered, CuSbSe2 despite exhibiting 2D long-range order exhibits superior electrochemical performance owing to the favorable electronic and structural features. The CuSbSe2 exhibits a reversible capacity of 881 mAh g-1 compared to 516 mAh g-1 for Sn0.2Sb1.8Se3 and 429 mAh g-1 for Sb2Se3, with an improved Coulombic efficiency as well. The transient electrochemical investigations of Electrochemical Impedance Spectroscopy (EIS) and Galvanostatic intermittent titration techniques (GITT) reveal that better performance exhibited by CuSbSe2 may well be attributed to kinetics owing to enhanced diffusion coefficients in the intercalation and conversion regime.

通过铜掺杂介导的 Sb2Se3 向 CuSbSe2 的相变增强 Na 离子电化学性能并改善动力学。
这项研究探讨了结构和电子改性对转换和合金材料电化学性能的影响。CuSbSe2 是一种很有前途的二维层状转换和合金材料,本研究参照母体原始 Sb2Se3 和后来的掺杂版 Sn0.2Sb1.8Se3,对其钠离子电池性能进行了研究。众所周知,具有层状结构的 CuSbSe2 可通过层间移动来适应晶格畸变,从而有可能减轻碱离子(本例中为 Na)插入所带来的畸变。相比之下,具有一维晶体结构的母体转换兼合金材料 Sb2Se3 会在电池运行过程中导致结构解体。掺锡的类似物 Sn0.2Sb1.8Se3 由于长程有序性降低,动力学性能相对增强。二维层状的 CuSbSe2 尽管表现出二维长程阶次,但由于其有利的电子和结构特征,表现出卓越的电化学性能。与 Sn0.2Sb1.8Se3 的 516 mAh g-1 和 Sb2Se3 的 429 mAh g-1 相比,CuSbSe2 的可逆容量达到 881 mAh g-1,库仑效率也有所提高。通过电化学阻抗谱(EIS)和伽伐诺静态间歇滴定技术(GITT)进行的瞬态电化学研究表明,CuSbSe2 表现出的更佳性能很可能是由于在插层和转换过程中扩散系数增强而导致的动力学效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信