Mirae Kim, Jaeho Song, Seung Yeol Shin, Kazuhiro Kogure, Ilnam Kang, Jang-Cheon Cho
{"title":"Cultivation of deep-sea bacteria from the Northwest Pacific Ocean and characterization of Limnobacter profundi sp. nov., a phenol-degrading bacterium","authors":"Mirae Kim, Jaeho Song, Seung Yeol Shin, Kazuhiro Kogure, Ilnam Kang, Jang-Cheon Cho","doi":"10.3389/fmars.2024.1449548","DOIUrl":null,"url":null,"abstract":"Despite previous culture-independent studies highlighting the prevalence of the order <jats:italic>Burkholderiales</jats:italic> in deep-sea environments, the cultivation and characterization of deep-sea <jats:italic>Burkholderiales</jats:italic> have been infrequent. A total of 243 deep-sea bacterial strains were isolated from various depths in the Northwest Pacific Ocean, with 33 isolates (13.6%) from a depth of 4000 m classified into <jats:italic>Burkholderiales.</jats:italic> Herein, we report the isolation and genome characteristics of strain SAORIC-580<jats:sup>T</jats:sup>, from a depth of 4000 m in the Northwest Pacific Ocean. The strain showed a close phylogenetic relationship with <jats:italic>Limnobacter thiooxidans</jats:italic> CS-K2<jats:sup>T</jats:sup>, sharing 99.9% 16S rRNA gene sequence identity. The complete whole-genome sequence of strain SAORIC-580<jats:sup>T</jats:sup> comprised 3.3 Mbp with a DNA G+C content of 52.5%. Comparative genomic analysis revealed average nucleotide identities between 79.4–85.7% and digital DNA-DNA hybridization values of 19.9–29.5% when compared to other <jats:italic>Limnobacter</jats:italic> genomes, indicating that the strain represents a novel species within the genus. Genomic analysis revealed unique adaptations to deep-sea conditions, including genes associated with phenol degradation, stress responses, cold adaptation, heavy metal resistance, signal transduction, and carbohydrate metabolism. The SAORIC-580<jats:sup>T</jats:sup> genome was found to be more abundant in the deep sea than at the surface in the trenches of the Northwest Pacific Ocean, suggesting adaptations to the deep-sea environment. Phenotypic characterization highlighted distinct differences from other <jats:italic>Limnobacter</jats:italic> species, including variations in growth conditions, enzyme activities, and phenol degradation capabilities. Chemotaxonomic markers of the strain included ubiquinone-10, major fatty acids such as C<jats:sub>16:0</jats:sub>, C<jats:sub>16:1</jats:sub>, and C<jats:sub>18:1</jats:sub>, and major polar lipids including phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. Based on the polyphasic taxonomic data, it is concluded that strain SAORIC-580<jats:sup>T</jats:sup> (= KACC 21440<jats:sup>T</jats:sup> = NBRC 114111<jats:sup>T</jats:sup>) represents a novel species, for which the name <jats:italic>Limnobacter profundi</jats:italic> sp. nov. is proposed.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"4 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2024.1449548","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite previous culture-independent studies highlighting the prevalence of the order Burkholderiales in deep-sea environments, the cultivation and characterization of deep-sea Burkholderiales have been infrequent. A total of 243 deep-sea bacterial strains were isolated from various depths in the Northwest Pacific Ocean, with 33 isolates (13.6%) from a depth of 4000 m classified into Burkholderiales. Herein, we report the isolation and genome characteristics of strain SAORIC-580T, from a depth of 4000 m in the Northwest Pacific Ocean. The strain showed a close phylogenetic relationship with Limnobacter thiooxidans CS-K2T, sharing 99.9% 16S rRNA gene sequence identity. The complete whole-genome sequence of strain SAORIC-580T comprised 3.3 Mbp with a DNA G+C content of 52.5%. Comparative genomic analysis revealed average nucleotide identities between 79.4–85.7% and digital DNA-DNA hybridization values of 19.9–29.5% when compared to other Limnobacter genomes, indicating that the strain represents a novel species within the genus. Genomic analysis revealed unique adaptations to deep-sea conditions, including genes associated with phenol degradation, stress responses, cold adaptation, heavy metal resistance, signal transduction, and carbohydrate metabolism. The SAORIC-580T genome was found to be more abundant in the deep sea than at the surface in the trenches of the Northwest Pacific Ocean, suggesting adaptations to the deep-sea environment. Phenotypic characterization highlighted distinct differences from other Limnobacter species, including variations in growth conditions, enzyme activities, and phenol degradation capabilities. Chemotaxonomic markers of the strain included ubiquinone-10, major fatty acids such as C16:0, C16:1, and C18:1, and major polar lipids including phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. Based on the polyphasic taxonomic data, it is concluded that strain SAORIC-580T (= KACC 21440T = NBRC 114111T) represents a novel species, for which the name Limnobacter profundi sp. nov. is proposed.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.