Impact of boron desymmetrization on supramolecular polymerization of BODIPY dyes

IF 4.6 1区 化学 Q1 CHEMISTRY, ORGANIC
Tobias B. Tischer, Zulema Fernandez, Lorenz Borsdorf, Constantin Daniliuc, Shigehiro Yamaguchi, Soichiro Ogi, Gustavo Fernandez
{"title":"Impact of boron desymmetrization on supramolecular polymerization of BODIPY dyes","authors":"Tobias B. Tischer, Zulema Fernandez, Lorenz Borsdorf, Constantin Daniliuc, Shigehiro Yamaguchi, Soichiro Ogi, Gustavo Fernandez","doi":"10.1039/d4qo01848f","DOIUrl":null,"url":null,"abstract":"Supramolecular polymers are often investigated for highly symmetric and planar molecules, such as typically explored BF2<small><sub></sub></small>-substituted BODIPY dyes . However, it is surprising that the possibility of desymmetrizing the sp3<small><sup></sup></small> hybridized boron centre of BODIPY dyes has remained unexplored in the context of supramolecular polymerization. Herein, we synthesized a new BODIPY derivative 2 with two different substituents at the boron (fluorine and phenyl), resulting in a system with two different π-surfaces, and analyzed its supramolecular polymerization in non-polar media. Notably, this symmetry reduction increases the complexity of the self-assembly by enabling the formation of an intermediate assembled state, which can not be found in the symmetrical model BODIPY 1 with a BF2<small><sub></sub></small> group. Different experimental and theoretical studies suggest that significant steric effects together with multiple potential intermolecular stacking modes of the BODIPY dyes lead to discrete nanoparticle intermediates that ultimately transform into more-ordered H-type supramolecular polymers at lower temperatures. Our results introduce a new design strategy for controlled supramolecular polymerization.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"27 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qo01848f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Supramolecular polymers are often investigated for highly symmetric and planar molecules, such as typically explored BF2-substituted BODIPY dyes . However, it is surprising that the possibility of desymmetrizing the sp3 hybridized boron centre of BODIPY dyes has remained unexplored in the context of supramolecular polymerization. Herein, we synthesized a new BODIPY derivative 2 with two different substituents at the boron (fluorine and phenyl), resulting in a system with two different π-surfaces, and analyzed its supramolecular polymerization in non-polar media. Notably, this symmetry reduction increases the complexity of the self-assembly by enabling the formation of an intermediate assembled state, which can not be found in the symmetrical model BODIPY 1 with a BF2 group. Different experimental and theoretical studies suggest that significant steric effects together with multiple potential intermolecular stacking modes of the BODIPY dyes lead to discrete nanoparticle intermediates that ultimately transform into more-ordered H-type supramolecular polymers at lower temperatures. Our results introduce a new design strategy for controlled supramolecular polymerization.
硼非对称化对 BODIPY 染料超分子聚合的影响
超分子聚合物通常针对高度对称的平面分子进行研究,如典型的 BF2 取代 BODIPY 染料。然而,令人惊讶的是,在超分子聚合的背景下,BODIPY 染料的 sp3 杂化硼中心去对称化的可能性仍未得到探索。在此,我们合成了一种新的 BODIPY 衍生物 2,该衍生物的硼具有两个不同的取代基(氟和苯基),从而形成了具有两个不同 π 表面的体系,并分析了其在非极性介质中的超分子聚合情况。值得注意的是,这种对称性的降低增加了自组装的复杂性,使中间组装态得以形成,而这在带有 BF2 基团的对称模型 BODIPY 1 中是找不到的。不同的实验和理论研究表明,BODIPY 染料显著的立体效应和多种潜在的分子间堆叠模式导致了离散的纳米粒子中间体,最终在较低温度下转化为更有序的 H 型超分子聚合物。我们的研究结果为受控超分子聚合引入了一种新的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Chemistry Frontiers
Organic Chemistry Frontiers CHEMISTRY, ORGANIC-
CiteScore
7.90
自引率
11.10%
发文量
686
审稿时长
1 months
期刊介绍: Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信