{"title":"Enhanced strength and toughness of SiC/C composite ceramics via SiC@graphene core–shell nanoparticles","authors":"Zhitong Xu, Jian Zhao, Malin Liu, Zebing Liu, Xinyu Cheng, Jiaxing Chang, Xu Yang, Bowen Li, Bing Liu, Rongzheng Liu","doi":"10.1111/jace.20151","DOIUrl":null,"url":null,"abstract":"<p>Developing high strength and tough silicon carbide (SiC) composite ceramics remains a significant challenge. Here, we report the process of synthesizing fully densified SiC/C composite ceramics using SiC@graphene (SiC@G) core–shell nanoparticles as raw materials through spark plasma sintering (SPS) at 1700°C and 45 MPa. The SiC@G nanoparticles were synthesized by the fluidized bed chemical vapor deposition (FB-CVD) method. During the sintering process, graphene coated, the surface of nanosized SiC particles exhibited high electrical and thermal conductivity, facilitating the uniform distribution of pulse current and heat and promoting the densification of SiC/C composite ceramics. For the prepared SiC/C composite ceramic, the carbon content reaches as high as 14.3 wt%, with carbon uniformly dispersed in a particulate form within the SiC matrix and stable interface bonding. Consequently, the introduction of excessive carbon does not compromise the hardness (28.8 GPa) and flexural strength (517.34 MPa) of the SiC/C composite ceramics. Furthermore, the carbon particles effectively enhance the toughness of the SiC/C composite material through mechanisms such as crack branching, bridging, and deflection, resulting in a fracture toughness of 7.38 MPa m<sup>1/2</sup>. The preparation strategy in this study provides a novel route for sintering SiC composites with high-carbon content through nanoscale powder structure design, resulting in the attainment of high-performance lightweight composite materials.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20151","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Developing high strength and tough silicon carbide (SiC) composite ceramics remains a significant challenge. Here, we report the process of synthesizing fully densified SiC/C composite ceramics using SiC@graphene (SiC@G) core–shell nanoparticles as raw materials through spark plasma sintering (SPS) at 1700°C and 45 MPa. The SiC@G nanoparticles were synthesized by the fluidized bed chemical vapor deposition (FB-CVD) method. During the sintering process, graphene coated, the surface of nanosized SiC particles exhibited high electrical and thermal conductivity, facilitating the uniform distribution of pulse current and heat and promoting the densification of SiC/C composite ceramics. For the prepared SiC/C composite ceramic, the carbon content reaches as high as 14.3 wt%, with carbon uniformly dispersed in a particulate form within the SiC matrix and stable interface bonding. Consequently, the introduction of excessive carbon does not compromise the hardness (28.8 GPa) and flexural strength (517.34 MPa) of the SiC/C composite ceramics. Furthermore, the carbon particles effectively enhance the toughness of the SiC/C composite material through mechanisms such as crack branching, bridging, and deflection, resulting in a fracture toughness of 7.38 MPa m1/2. The preparation strategy in this study provides a novel route for sintering SiC composites with high-carbon content through nanoscale powder structure design, resulting in the attainment of high-performance lightweight composite materials.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.