{"title":"Angiotensin Receptor–Neprilysin Inhibitor in Heart Failure Patients With Renal Dysfunction","authors":"Xiaogang Zhu, Xialing Li, Lingxuan Zhu, Zichuan Tong, Xiuying Xu","doi":"10.1155/2024/6231184","DOIUrl":null,"url":null,"abstract":"<p>Heart failure (HF) and renal dysfunction often coexist and interact in many complex and bidirectional pathways, leading to detrimental effects on patient outcomes. The treatment of HF patients with renal dysfunction presents a significant clinical challenge. Interestingly, sacubitril/valsartan, an angiotensin receptor–neprilysin inhibitor (ARNI), may have beneficial effects on cardiac and renal outcomes in patients with HF with reduced ejection fraction, particularly by slowing the rate of decrease in the estimated glomerular filtration rate compared to a single angiotensin–converting enzyme inhibitor. Recently, more reports have emphasized the renal protection of sacubitril/valsartan in patients with HF. In HF patients with renal dysfunction, however, there is no strong evidence supporting the use of sacubitril/valsartan to reduce the absolute risk of hyperkalemia and worsening renal function; therefore, the administration of ARNI requires a careful balance between the benefits and risks. Furthermore, the lack of evidence-based management highlights the importance of an individualized approach based on published experience and multidisciplinary collaborations, as well as underlines the need for in-depth studies investigating the underlying mechanisms in cardiorenal interactions with a focus on treatments.</p>","PeriodicalId":9582,"journal":{"name":"Cardiovascular Therapeutics","volume":"2024 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6231184","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6231184","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Heart failure (HF) and renal dysfunction often coexist and interact in many complex and bidirectional pathways, leading to detrimental effects on patient outcomes. The treatment of HF patients with renal dysfunction presents a significant clinical challenge. Interestingly, sacubitril/valsartan, an angiotensin receptor–neprilysin inhibitor (ARNI), may have beneficial effects on cardiac and renal outcomes in patients with HF with reduced ejection fraction, particularly by slowing the rate of decrease in the estimated glomerular filtration rate compared to a single angiotensin–converting enzyme inhibitor. Recently, more reports have emphasized the renal protection of sacubitril/valsartan in patients with HF. In HF patients with renal dysfunction, however, there is no strong evidence supporting the use of sacubitril/valsartan to reduce the absolute risk of hyperkalemia and worsening renal function; therefore, the administration of ARNI requires a careful balance between the benefits and risks. Furthermore, the lack of evidence-based management highlights the importance of an individualized approach based on published experience and multidisciplinary collaborations, as well as underlines the need for in-depth studies investigating the underlying mechanisms in cardiorenal interactions with a focus on treatments.
期刊介绍:
Cardiovascular Therapeutics (formerly Cardiovascular Drug Reviews) is a peer-reviewed, Open Access journal that publishes original research and review articles focusing on cardiovascular and clinical pharmacology, as well as clinical trials of new cardiovascular therapies. Articles on translational research, pharmacogenomics and personalized medicine, device, gene and cell therapies, and pharmacoepidemiology are also encouraged.
Subject areas include (but are by no means limited to):
Acute coronary syndrome
Arrhythmias
Atherosclerosis
Basic cardiac electrophysiology
Cardiac catheterization
Cardiac remodeling
Coagulation and thrombosis
Diabetic cardiovascular disease
Heart failure (systolic HF, HFrEF, diastolic HF, HFpEF)
Hyperlipidemia
Hypertension
Ischemic heart disease
Vascular biology
Ventricular assist devices
Molecular cardio-biology
Myocardial regeneration
Lipoprotein metabolism
Radial artery access
Percutaneous coronary intervention
Transcatheter aortic and mitral valve replacement.