{"title":"A hierarchical reinforcement learning approach for energy-aware service function chain dynamic deployment in IoT","authors":"Shuyi Wang, Haotong Cao, Longxiang Yang","doi":"10.1049/cmu2.12824","DOIUrl":null,"url":null,"abstract":"<p>Traffic volume is increasing dramatically due to the quick development of technologies like online gaming, on-demand video streaming, and the Internet of Things (IoT). The telecommunications industry's large-scale expansion is increasing its energy usage and carbon footprint. Given the desire to minimize energy consumption and carbon emissions, one of the most essential concerns of future communication networks is ensuring rigorous performance restrictions of IoT services while improving energy efficiency. In this regard, a convolutional neural network-based hierarchical reinforcement learning approach is provided to lower total energy consumption and carbon emissions in the dynamic service function chaining situations. This method can more effectively lower energy consumption and carbon emissions when compared to other hierarchical algorithms based on conventional deep neural networks and non-hierarchical algorithms. The suggested method is tested in three typical complicated networks with different network parameters to show its suitability in different network scenarios.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 18","pages":"1231-1243"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12824","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12824","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Traffic volume is increasing dramatically due to the quick development of technologies like online gaming, on-demand video streaming, and the Internet of Things (IoT). The telecommunications industry's large-scale expansion is increasing its energy usage and carbon footprint. Given the desire to minimize energy consumption and carbon emissions, one of the most essential concerns of future communication networks is ensuring rigorous performance restrictions of IoT services while improving energy efficiency. In this regard, a convolutional neural network-based hierarchical reinforcement learning approach is provided to lower total energy consumption and carbon emissions in the dynamic service function chaining situations. This method can more effectively lower energy consumption and carbon emissions when compared to other hierarchical algorithms based on conventional deep neural networks and non-hierarchical algorithms. The suggested method is tested in three typical complicated networks with different network parameters to show its suitability in different network scenarios.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf