Implicit expression recognition enhanced table-filling for aspect sentiment triplet extraction

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yanbo Li , Qing He , Nisuo Du , Qingni He
{"title":"Implicit expression recognition enhanced table-filling for aspect sentiment triplet extraction","authors":"Yanbo Li ,&nbsp;Qing He ,&nbsp;Nisuo Du ,&nbsp;Qingni He","doi":"10.1016/j.neucom.2024.128776","DOIUrl":null,"url":null,"abstract":"<div><div>Aspect sentiment triplet extraction (ASTE) is a challenging task in aspect-based sentiment analysis (ABSA), involving the identification of aspect terms, opinion terms, and their corresponding sentiment polarities within comments to form triplets. The emergence of more realistic DMASTE datasets, featuring diverse domains, implicit aspect terms, and longer comments, poses challenges for existing methods. In particular, these methods struggle with recognizing implicit expressions effectively and capturing sufficient information. To overcome these hurdles, we propose an implicit expression recognition enhanced table-filling (IERET) method. This approach integrates modeling of overall implicit expression in sentences and employs a bidirectional information aggregation module to capture word pair information comprehensively. During the decoding process, a table-filling method accurately delineates aspect-opinion pair boundaries. Experimental results across in-domain, single-source cross-domain, and multi-source cross-domain on the DMASTE dataset demonstrate that our proposed IERET method achieves state-of-the-art performance.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015479","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Aspect sentiment triplet extraction (ASTE) is a challenging task in aspect-based sentiment analysis (ABSA), involving the identification of aspect terms, opinion terms, and their corresponding sentiment polarities within comments to form triplets. The emergence of more realistic DMASTE datasets, featuring diverse domains, implicit aspect terms, and longer comments, poses challenges for existing methods. In particular, these methods struggle with recognizing implicit expressions effectively and capturing sufficient information. To overcome these hurdles, we propose an implicit expression recognition enhanced table-filling (IERET) method. This approach integrates modeling of overall implicit expression in sentences and employs a bidirectional information aggregation module to capture word pair information comprehensively. During the decoding process, a table-filling method accurately delineates aspect-opinion pair boundaries. Experimental results across in-domain, single-source cross-domain, and multi-source cross-domain on the DMASTE dataset demonstrate that our proposed IERET method achieves state-of-the-art performance.
隐式表达识别增强了表格填充功能,可用于方面情感三元组提取
方面情感三元组提取(ASTE)是基于方面的情感分析(ABSA)中一项具有挑战性的任务,它涉及识别评论中的方面术语、观点术语及其相应的情感极性以形成三元组。更真实的 DMASTE 数据集具有不同的领域、隐含的方面术语和更长的评论,这些数据集的出现给现有方法带来了挑战。特别是,这些方法在有效识别隐式表达和捕获足够信息方面存在困难。为了克服这些障碍,我们提出了一种隐式表达识别增强填表(IERET)方法。这种方法整合了句子中整体隐含表达的建模,并采用双向信息聚合模块来全面捕捉词对信息。在解码过程中,填表方法能准确划分出方面-观点对的边界。在 DMASTE 数据集上进行的域内、单源跨域和多源跨域实验结果表明,我们提出的 IERET 方法达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信