Pablo M. Cerezo , Alejandro S. Cruces , Steven Moore , Greg Wheatley , Pablo Lopez-Crespo
{"title":"Characterisation of 18Ni 300 steel CT specimens in a fatigue test manufactured by selective laser melting at 0°, 45° and 90°","authors":"Pablo M. Cerezo , Alejandro S. Cruces , Steven Moore , Greg Wheatley , Pablo Lopez-Crespo","doi":"10.1016/j.tafmec.2024.104730","DOIUrl":null,"url":null,"abstract":"<div><div>Maraging steel, 18Ni300, is a high-performance material that shows promising potential for various industrial applications. Selective Laser Melting is utilized in the manufacturing of high-value components. Understanding the fatigue mechanisms of this material is imperative, as its fatigue life is influenced by both surface and internal porosity, as well as defects produced when manufacturing the objects due to the patterns used. The main objective is to analyze the characterization of these pores and clarify their relationship with the fatigue properties of the material under study. Compact tension specimens were manufactured by selective laser melting at three angles (0°, 45° and 90°) with respect to the crack growing direction and fatigue tests were performed. A study of the porosity of the sample was conducted, which established a correlation between the printing angle, growing rate (da/dN curves), and the porosity that is categorised through the aspect ratio and the circularity ratio. It is shown that all manufacturing orientations generate similar pore sizes and area, but the 45° orientation induces pore with slightly higher circularity ratio. The results indicate that the faster fatigue crack growth might be linked to the slight increase in pore area and circularity, and this was observed for 45°.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"134 ","pages":"Article 104730"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224004804","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Maraging steel, 18Ni300, is a high-performance material that shows promising potential for various industrial applications. Selective Laser Melting is utilized in the manufacturing of high-value components. Understanding the fatigue mechanisms of this material is imperative, as its fatigue life is influenced by both surface and internal porosity, as well as defects produced when manufacturing the objects due to the patterns used. The main objective is to analyze the characterization of these pores and clarify their relationship with the fatigue properties of the material under study. Compact tension specimens were manufactured by selective laser melting at three angles (0°, 45° and 90°) with respect to the crack growing direction and fatigue tests were performed. A study of the porosity of the sample was conducted, which established a correlation between the printing angle, growing rate (da/dN curves), and the porosity that is categorised through the aspect ratio and the circularity ratio. It is shown that all manufacturing orientations generate similar pore sizes and area, but the 45° orientation induces pore with slightly higher circularity ratio. The results indicate that the faster fatigue crack growth might be linked to the slight increase in pore area and circularity, and this was observed for 45°.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.