FPGA-embedded optimization algorithm to maximize the acetate productivity in a dark fermentation process

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
José de Jesús Colín-Robles , Ixbalank Torres-Zúñiga , Mario A. Ibarra-Manzano , J. Gabriel Aviña-Cervantes , Víctor Alcaraz-González
{"title":"FPGA-embedded optimization algorithm to maximize the acetate productivity in a dark fermentation process","authors":"José de Jesús Colín-Robles ,&nbsp;Ixbalank Torres-Zúñiga ,&nbsp;Mario A. Ibarra-Manzano ,&nbsp;J. Gabriel Aviña-Cervantes ,&nbsp;Víctor Alcaraz-González","doi":"10.1016/j.jprocont.2024.103323","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an optimization strategy to online maximize the acetate productivity rate in a dark fermentation (DF) process. The Golden Section Search algorithm is used to compute the maximum acetate productivity rate as a function of the inlet chemical oxygen demand (COD) and the dilution rate, selected as a manipulated variable. Such maximum productivity is considered as a reference by a Super-Twisting controller to regulate the real acetate productivity rate of the DF process. Due to the lack of sensors to measure the COD online, the optimization strategy includes an unknown input observation strategy integrated by a Luenberger observer interconnected to a Super-Twisting observer to estimate the inlet COD concentration. The optimization algorithm is embedded in an FPGA (Field Programmable Gate Array) device to minimize hardware resources and power consumption. The feasibility of the online optimization strategy embedded in an FPGA, using a digital architecture designed with a fixed-point format representation, is demonstrated by numerical simulations. Results show that the optimization strategy requires 53% of the logic elements and 100% of 8-bit multipliers of an FPGA Cyclone II and the power consumption estimated is only <span><math><mrow><mn>190</mn><mspace></mspace><mi>m</mi><mi>W</mi></mrow></math></span>.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095915242400163X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an optimization strategy to online maximize the acetate productivity rate in a dark fermentation (DF) process. The Golden Section Search algorithm is used to compute the maximum acetate productivity rate as a function of the inlet chemical oxygen demand (COD) and the dilution rate, selected as a manipulated variable. Such maximum productivity is considered as a reference by a Super-Twisting controller to regulate the real acetate productivity rate of the DF process. Due to the lack of sensors to measure the COD online, the optimization strategy includes an unknown input observation strategy integrated by a Luenberger observer interconnected to a Super-Twisting observer to estimate the inlet COD concentration. The optimization algorithm is embedded in an FPGA (Field Programmable Gate Array) device to minimize hardware resources and power consumption. The feasibility of the online optimization strategy embedded in an FPGA, using a digital architecture designed with a fixed-point format representation, is demonstrated by numerical simulations. Results show that the optimization strategy requires 53% of the logic elements and 100% of 8-bit multipliers of an FPGA Cyclone II and the power consumption estimated is only 190mW.

Abstract Image

在黑暗发酵过程中最大限度提高醋酸生产率的 FPGA 嵌入式优化算法
本文介绍了一种在线最大化暗发酵(DF)工艺中醋酸盐生产率的优化策略。采用黄金分割搜索算法计算最大醋酸盐生产率,并将其作为入口化学需氧量(COD)和稀释率的函数。超级扭曲控制器将此最大生产率作为参考,以调节 DF 工艺的实际醋酸盐生产率。由于缺乏在线测量化学需氧量的传感器,优化策略包括一个未知输入观测策略,该策略由一个与超级扭转观测器相互连接的卢恩伯格观测器整合而成,用于估计入口处的化学需氧量浓度。优化算法嵌入到 FPGA(现场可编程门阵列)设备中,以最大限度地减少硬件资源和功耗。数值模拟证明了嵌入 FPGA 的在线优化策略的可行性,该策略采用定点格式表示的数字架构设计。结果表明,该优化策略只需要 FPGA Cyclone II 53% 的逻辑元件和 100% 的 8 位乘法器,功耗估计仅为 190mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信