Novel mathematical formulations for parallel-batching processing machine scheduling problems

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shaoxiang Zheng , Naiming Xie , Qiao Wu , Caijie Liu
{"title":"Novel mathematical formulations for parallel-batching processing machine scheduling problems","authors":"Shaoxiang Zheng ,&nbsp;Naiming Xie ,&nbsp;Qiao Wu ,&nbsp;Caijie Liu","doi":"10.1016/j.cor.2024.106859","DOIUrl":null,"url":null,"abstract":"<div><div>We study mathematical formulations for batch-processing machine scheduling problems (BPMPs), which are the challenging issues in the machine scheduling literature where machines are capable of processing a batch of jobs simultaneously if jobs with non-identical sizes can be packed in a capacitated machine. In this paper, we tackle single- and parallel-machine BPMPs, and other interesting problem variants that aim at minimizing the makespan. We develop novel formulations along with valid inequalities and an algorithm framework that makes use of dual information and bounding techniques to achieve efficiency when instances are intractable. Extensive computational experiments on benchmark instances show that our approaches achieve state-of-the-art results and prove the optimality of intractable instances in the literature.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054824003319","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We study mathematical formulations for batch-processing machine scheduling problems (BPMPs), which are the challenging issues in the machine scheduling literature where machines are capable of processing a batch of jobs simultaneously if jobs with non-identical sizes can be packed in a capacitated machine. In this paper, we tackle single- and parallel-machine BPMPs, and other interesting problem variants that aim at minimizing the makespan. We develop novel formulations along with valid inequalities and an algorithm framework that makes use of dual information and bounding techniques to achieve efficiency when instances are intractable. Extensive computational experiments on benchmark instances show that our approaches achieve state-of-the-art results and prove the optimality of intractable instances in the literature.
并行批量加工机器调度问题的新数学公式
我们研究了批处理机器调度问题(BPMPs)的数学公式,这是机器调度文献中具有挑战性的问题,在这种情况下,如果大小不相同的作业可以装在一台有容量的机器上,那么机器就能同时处理一批作业。在本文中,我们讨论了单机和并行机器 BPMP 以及其他有趣的问题变体,这些问题的目标是最小化作业间隔。我们开发了新颖的公式、有效的不等式和算法框架,该框架利用对偶信息和边界技术,在实例难以解决时实现高效。在基准实例上进行的大量计算实验表明,我们的方法取得了最先进的结果,并证明了文献中难以解决的实例的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信