{"title":"First passage percolation with recovery","authors":"Elisabetta Candellero , Tom Garcia-Sanchez","doi":"10.1016/j.spa.2024.104512","DOIUrl":null,"url":null,"abstract":"<div><div>First passage percolation with recovery is a process aimed at modeling the spread of epidemics. On a graph <span><math><mi>G</mi></math></span> place a red particle at a reference vertex <span><math><mi>o</mi></math></span> and colorless particles (seeds) at all other vertices. The red particle starts spreading a <em>red first passage percolation</em> of rate 1, while all seeds are dormant. As soon as a seed is reached by the process, it turns red and starts spreading red first passage percolation. All vertices are equipped with independent exponential clocks ringing at rate <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, when a clock rings the corresponding <em>red vertex turns black</em>. For <span><math><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> denote the size of the longest red path and of the largest red cluster present at time <span><math><mi>t</mi></math></span>. If <span><math><mi>G</mi></math></span> is the semi-line, then for all <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span> almost surely <span><math><mrow><msub><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>log</mo><mo>log</mo><mi>t</mi></mrow><mrow><mo>log</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mo>lim inf</mo></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. In contrast, if <span><math><mi>G</mi></math></span> is an infinite Galton–Watson tree with offspring mean <span><math><mrow><mi>m</mi><mo>></mo><mn>1</mn></mrow></math></span> then, for all <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, almost surely <span><math><mrow><msub><mrow><mo>lim inf</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>log</mo><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>≥</mo><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mo>lim inf</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>log</mo><mo>log</mo><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>≥</mo><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span>, while <span><math><mrow><msub><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>c</mi><mi>t</mi></mrow></msup></mrow></mfrac><mo>≤</mo><mn>1</mn></mrow></math></span>, for all <span><math><mrow><mi>c</mi><mo>></mo><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span>. Also, almost surely as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, for all <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span> <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is of order at most <span><math><mi>t</mi></math></span>. Furthermore, if we restrict our attention to bounded-degree graphs, then for any <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span> there is a critical value <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> so that for all <span><math><mrow><mi>γ</mi><mo>></mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, almost surely <span><math><mrow><msub><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow><mrow><mi>t</mi></mrow></mfrac><mo>≤</mo><mi>ɛ</mi></mrow></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104512"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002205","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
First passage percolation with recovery is a process aimed at modeling the spread of epidemics. On a graph place a red particle at a reference vertex and colorless particles (seeds) at all other vertices. The red particle starts spreading a red first passage percolation of rate 1, while all seeds are dormant. As soon as a seed is reached by the process, it turns red and starts spreading red first passage percolation. All vertices are equipped with independent exponential clocks ringing at rate , when a clock rings the corresponding red vertex turns black. For , let and denote the size of the longest red path and of the largest red cluster present at time . If is the semi-line, then for all almost surely and . In contrast, if is an infinite Galton–Watson tree with offspring mean then, for all , almost surely and , while , for all . Also, almost surely as , for all is of order at most . Furthermore, if we restrict our attention to bounded-degree graphs, then for any there is a critical value so that for all , almost surely .
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.