{"title":"Study on the growth mechanism of Pt nanoparticles in oxides: Role of metal-oxide interactions","authors":"","doi":"10.1016/j.scriptamat.2024.116436","DOIUrl":null,"url":null,"abstract":"<div><div>Strong interactions of metal nanoparticles (NPs) with oxide matrices can dramatically enhance the thermal stability of metal NPs. However, how metal-oxide interactions control the growth of metal NPs remains unclear. Here, the growth of Pt NPs with respect to metal-oxide interactions was investigated by encapsulating them in different Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> oxides. Pt NPs encapsulated in Al<sub>2</sub>O<sub>3</sub> exhibited excellent thermal stability than those in SiO<sub>2</sub>. Quantitative thermodynamic calculations revealed that metal-oxide interactions strongly governed the driving force for the coalescence of Pt in Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>. The kinetic analysis further showed that stronger Pt-Al<sub>2</sub>O<sub>3</sub> interactions controlled the Ostwald ripening of Pt NPs by restricting the diffusion of Pt atoms in oxides, leading to a higher growth activation energy of Pt in Al<sub>2</sub>O<sub>3</sub> than SiO<sub>2</sub>. These findings explain the different sinter resistance of metal NPs when encapsulated in different oxides, providing valuable insights for enhancing the thermal stability of metal NPs.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224004718","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Strong interactions of metal nanoparticles (NPs) with oxide matrices can dramatically enhance the thermal stability of metal NPs. However, how metal-oxide interactions control the growth of metal NPs remains unclear. Here, the growth of Pt NPs with respect to metal-oxide interactions was investigated by encapsulating them in different Al2O3 and SiO2 oxides. Pt NPs encapsulated in Al2O3 exhibited excellent thermal stability than those in SiO2. Quantitative thermodynamic calculations revealed that metal-oxide interactions strongly governed the driving force for the coalescence of Pt in Al2O3 and SiO2. The kinetic analysis further showed that stronger Pt-Al2O3 interactions controlled the Ostwald ripening of Pt NPs by restricting the diffusion of Pt atoms in oxides, leading to a higher growth activation energy of Pt in Al2O3 than SiO2. These findings explain the different sinter resistance of metal NPs when encapsulated in different oxides, providing valuable insights for enhancing the thermal stability of metal NPs.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.