Fangyuan Zhang , Rukai Wei , Yanzhao Xie , Yangtao Wang , Xin Tan , Lizhuang Ma , Maobin Tang , Lisheng Fan
{"title":"Cross-coupled prompt learning for few-shot image recognition","authors":"Fangyuan Zhang , Rukai Wei , Yanzhao Xie , Yangtao Wang , Xin Tan , Lizhuang Ma , Maobin Tang , Lisheng Fan","doi":"10.1016/j.displa.2024.102862","DOIUrl":null,"url":null,"abstract":"<div><div>Prompt learning based on large models shows great potential to reduce training time and resource costs, which has been progressively applied to visual tasks such as image recognition. Nevertheless, the existing prompt learning schemes suffer from either inadequate prompt information from a single modality or insufficient prompt interaction between multiple modalities, resulting in low efficiency and performance. To address these limitations, we propose a <u>C</u>ross-<u>C</u>oupled <u>P</u>rompt <u>L</u>earning (CCPL) architecture, which is designed with two novel components (i.e., Cross-Coupled Prompt Generator (CCPG) module and Cross-Modal Fusion (CMF) module) to achieve efficient interaction between visual and textual prompts. Specifically, the CCPG module incorporates a cross-attention mechanism to automatically generate visual and textual prompts, each of which will be adaptively updated using the self-attention mechanism in their respective image and text encoders. Furthermore, the CMF module implements a deep fusion to reinforce the cross-modal feature interaction from the output layer with the Image–Text Matching (ITM) loss function. We conduct extensive experiments on 8 image datasets. The experimental results verify that our proposed CCPL outperforms the SOTA methods on few-shot image recognition tasks. The source code of this project is released at: <span><span>https://github.com/elegantTechie/CCPL</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"85 ","pages":"Article 102862"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224002269","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Prompt learning based on large models shows great potential to reduce training time and resource costs, which has been progressively applied to visual tasks such as image recognition. Nevertheless, the existing prompt learning schemes suffer from either inadequate prompt information from a single modality or insufficient prompt interaction between multiple modalities, resulting in low efficiency and performance. To address these limitations, we propose a Cross-Coupled Prompt Learning (CCPL) architecture, which is designed with two novel components (i.e., Cross-Coupled Prompt Generator (CCPG) module and Cross-Modal Fusion (CMF) module) to achieve efficient interaction between visual and textual prompts. Specifically, the CCPG module incorporates a cross-attention mechanism to automatically generate visual and textual prompts, each of which will be adaptively updated using the self-attention mechanism in their respective image and text encoders. Furthermore, the CMF module implements a deep fusion to reinforce the cross-modal feature interaction from the output layer with the Image–Text Matching (ITM) loss function. We conduct extensive experiments on 8 image datasets. The experimental results verify that our proposed CCPL outperforms the SOTA methods on few-shot image recognition tasks. The source code of this project is released at: https://github.com/elegantTechie/CCPL.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.