Gyanender Singh , Jordan A. Evans , Wen Jiang , Jason Hales , Stephen Novascone
{"title":"Impact of anisotropy on TRISO fuel performance","authors":"Gyanender Singh , Jordan A. Evans , Wen Jiang , Jason Hales , Stephen Novascone","doi":"10.1016/j.nucengdes.2024.113637","DOIUrl":null,"url":null,"abstract":"<div><div>Manufacturing of tristructural isotropic (TRISO) particles involves the deposition of pyrolytic carbon (PyC) and silicon carbide (SiC) layers using the fluidized bed chemical vapor deposition (CVD) process. The CVD process is known to generate polycrystalline layers with crystallographic textures, which imparts anisotropic thermophysical properties to the layers. Past studies have shown the risk for particle failure increases with an increase in anisotropy. The limit beyond which the anisotropy of PyC layers becomes unacceptable due to failure risk has been identified as a high-priority knowledge gap. This work presents a first systematic study on the effects of anisotropic thermal and mechanical properties on TRISO fuel performance. This computational study, performed using the fuel performance code BISON, investigates how the anisotropy in elasticity and thermal properties affect the stresses, temperature, and failure of a TRISO particle. The influence of other factors, such as operating temperature and particle geometry on the anisotropy effects, also has been analyzed. The studies utilize the recently published anisotropic elasticity and thermal behavior models for TRISO PyC and SiC layers implemented using tensors with full anisotropic capability. The spherical TRISO particles with anisotropic properties were found to have greater maximum tensile stress and significantly higher failure probability than the spherical particles with isotropic properties. The fuel performance predicted using these recently developed models was found to be comparable with the performance obtained using the historical models.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"430 ","pages":"Article 113637"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007374","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Manufacturing of tristructural isotropic (TRISO) particles involves the deposition of pyrolytic carbon (PyC) and silicon carbide (SiC) layers using the fluidized bed chemical vapor deposition (CVD) process. The CVD process is known to generate polycrystalline layers with crystallographic textures, which imparts anisotropic thermophysical properties to the layers. Past studies have shown the risk for particle failure increases with an increase in anisotropy. The limit beyond which the anisotropy of PyC layers becomes unacceptable due to failure risk has been identified as a high-priority knowledge gap. This work presents a first systematic study on the effects of anisotropic thermal and mechanical properties on TRISO fuel performance. This computational study, performed using the fuel performance code BISON, investigates how the anisotropy in elasticity and thermal properties affect the stresses, temperature, and failure of a TRISO particle. The influence of other factors, such as operating temperature and particle geometry on the anisotropy effects, also has been analyzed. The studies utilize the recently published anisotropic elasticity and thermal behavior models for TRISO PyC and SiC layers implemented using tensors with full anisotropic capability. The spherical TRISO particles with anisotropic properties were found to have greater maximum tensile stress and significantly higher failure probability than the spherical particles with isotropic properties. The fuel performance predicted using these recently developed models was found to be comparable with the performance obtained using the historical models.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.