Hydrothermally synthesized cobalt oxide/polydimethylsiloxane based photothermal absorber for superior thermal energy conversion and water evaporation application

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Hydrothermally synthesized cobalt oxide/polydimethylsiloxane based photothermal absorber for superior thermal energy conversion and water evaporation application","authors":"","doi":"10.1016/j.matchemphys.2024.130103","DOIUrl":null,"url":null,"abstract":"<div><div>Solar-driven interfacial evaporation has garnered worldwide interest in recent years due to its unique vapor generating capacity using sustainable solar energy. Many photoabsorber have been studied for conversion of photothermal energy and heat absorption. Unfortunately, the majority of the absorber materials in supply are pricey, and the installation procedures tend to be intricate. This research focuses on the ongoing difficulty of creating cost-efficient photothermal materials that have excellent light absorption and simple manufacturing processes. We created a novel composites coated with Cobalt oxide and polydimethylsiloxane (Co<sub>3</sub>O<sub>4</sub>/PDMS) which successfully produce energy and purify water utilizing an extensive spectrum of solar energy. Hydrothermally synthesized Co<sub>3</sub>O<sub>4</sub> particles exhibit distinct optical properties in the UV–Vis region due to ligand field transitions and charge transfer between Co<sup>2</sup>⁺ and Co³⁺ ions. Additionally, these particles exhibits a strong absorption in the NIR region due to the intervalence charge transfer and d-d transitions, enhancing their photothermal activity. This culminates in outstanding light-to-heat transformation in the Co<sub>3</sub>O<sub>4</sub>/PDMS composite, which maintains a surface temperature of 42.7 °C compared to 33.7 °C for pristine PDMS under standard 1 sun intensity for 5 min. The flexible Co<sub>3</sub>O<sub>4</sub>/PDMS composite transfers solar energy to electric energy, producing ∼99 mV with 1 sun irradiation, while bare PDMS only achieved a voltage of 61 mV under 1 sun circumstances. An efficient double layer Co<sub>3</sub>O<sub>4</sub>/PDMS@MF sponge achieved an evaporation rate of 1.33 kg m<sup>−2</sup> h<sup>−1</sup> with the photothermal conversion efficiency of 68.8 %. These results motivate thorough investigation in photothermal potential of Co<sub>3</sub>O<sub>4,</sub> revealing the promising possibilities for harnessing solar-thermal energy and presents a novel method for using solar power to purify water and generate electricity.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012318","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven interfacial evaporation has garnered worldwide interest in recent years due to its unique vapor generating capacity using sustainable solar energy. Many photoabsorber have been studied for conversion of photothermal energy and heat absorption. Unfortunately, the majority of the absorber materials in supply are pricey, and the installation procedures tend to be intricate. This research focuses on the ongoing difficulty of creating cost-efficient photothermal materials that have excellent light absorption and simple manufacturing processes. We created a novel composites coated with Cobalt oxide and polydimethylsiloxane (Co3O4/PDMS) which successfully produce energy and purify water utilizing an extensive spectrum of solar energy. Hydrothermally synthesized Co3O4 particles exhibit distinct optical properties in the UV–Vis region due to ligand field transitions and charge transfer between Co2⁺ and Co³⁺ ions. Additionally, these particles exhibits a strong absorption in the NIR region due to the intervalence charge transfer and d-d transitions, enhancing their photothermal activity. This culminates in outstanding light-to-heat transformation in the Co3O4/PDMS composite, which maintains a surface temperature of 42.7 °C compared to 33.7 °C for pristine PDMS under standard 1 sun intensity for 5 min. The flexible Co3O4/PDMS composite transfers solar energy to electric energy, producing ∼99 mV with 1 sun irradiation, while bare PDMS only achieved a voltage of 61 mV under 1 sun circumstances. An efficient double layer Co3O4/PDMS@MF sponge achieved an evaporation rate of 1.33 kg m−2 h−1 with the photothermal conversion efficiency of 68.8 %. These results motivate thorough investigation in photothermal potential of Co3O4, revealing the promising possibilities for harnessing solar-thermal energy and presents a novel method for using solar power to purify water and generate electricity.

Abstract Image

基于氧化钴/聚二甲基硅氧烷的水热合成光热吸收器,可实现卓越的热能转换和水蒸发应用
近年来,太阳能驱动的界面蒸发因其利用可持续太阳能产生水蒸气的独特能力而受到全世界的关注。人们对许多光吸收器进行了研究,以实现光热转换和吸热。遗憾的是,目前供应的大部分吸收器材料都价格昂贵,而且安装程序往往错综复杂。这项研究的重点是如何制造出具有优异光吸收性能和简单制造工艺的低成本光热材料。我们创造了一种涂有氧化钴和聚二甲基硅氧烷(Co3O4/PDMS)的新型复合材料,成功地利用广泛的太阳能光谱生产能源和净化水。水热法合成的 Co3O4 粒子在紫外可见光区表现出独特的光学特性,这是由于配体场跃迁以及 Co2⁺和 Co³⁺ 离子之间的电荷转移所致。此外,由于间隔电荷转移和 d-d 转换,这些微粒在近红外区域表现出很强的吸收性,从而增强了它们的光热活性。最终,Co3O4/PDMS 复合材料实现了出色的光-热转换,在标准太阳光强度下 5 分钟,其表面温度保持在 42.7 °C,而原始 PDMS 的表面温度仅为 33.7 °C。柔性 Co3O4/PDMS 复合材料可将太阳能转化为电能,在太阳光照射下可产生 ∼ 99 mV 的电压,而裸露的 PDMS 在太阳光照射下只能产生 61 mV 的电压。高效双层 Co3O4/PDMS@MF 海绵的蒸发率为 1.33 kg m-2 h-1,光热转换效率为 68.8%。这些结果推动了对 Co3O4 光热潜力的深入研究,揭示了利用太阳热能的广阔前景,并提出了一种利用太阳能净化水和发电的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信