Enhancing microstructure, nanomechanical and tribological properties of TiAl alloy processed by spark plasma sintering with Si3N4 ceramic particulates addition

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Azeez Lawan Rominiyi , Peter Madindwa Mashinini , Moipone Linda Teffo
{"title":"Enhancing microstructure, nanomechanical and tribological properties of TiAl alloy processed by spark plasma sintering with Si3N4 ceramic particulates addition","authors":"Azeez Lawan Rominiyi ,&nbsp;Peter Madindwa Mashinini ,&nbsp;Moipone Linda Teffo","doi":"10.1016/j.matchemphys.2024.130113","DOIUrl":null,"url":null,"abstract":"<div><div>TiAl matrix composites reinforced with varying weight fractions of Si<sub>3</sub>N<sub>4</sub> ceramic particles were successfully fabricated by the spark plasma sintering method. The microstructure, nanomechanical and tribological properties of the sintered composites were investigated. The microstructural characterization revealed the evolution of a quasi-continuous and continuous network structure consisting of minor fractions of in-situ formed Ti<sub>2</sub>AlN, unreacted Si<sub>3</sub>N<sub>4</sub> ceramic particles and dominant Ti<sub>5</sub>Si<sub>3</sub> intermetallic phases within the TiAl matrix at Si<sub>3</sub>N<sub>4</sub> content above 1.5 wt%. The in-situ precipitated phases enhanced the nanomechanical and tribological properties of the composites. The 7Si<sub>3</sub>N<sub>4</sub>/TiAl composite displayed the best nanomechanical properties, including nanohardness, elastic modulus, and <em>H/E</em><sub><em>r</em></sub> ratio among the sintered samples. The specific wear rate of the composites decreases with increasing reinforcement content. 7Si<sub>3</sub>N<sub>4</sub>/TiAl composite exhibited the lowest specific wear rate of 0.38 ± 0.55 <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>−4</sup> mm<sup>3</sup>/Nm, representing a 95.6 % improvement in wear resistance compared to the unreinforced pure TiAl alloy. The improved wear performance of the composites was attributed to their load-bearing capacity and wear resistance of the hard, in-situ Ti<sub>2</sub>AlN, Ti<sub>5</sub>Si<sub>3</sub> and unreacted Si<sub>3</sub>N<sub>4</sub> particles in the TiAl matrix. The composites displayed a transition from adhesive wear to predominantly abrasive wear where the hard Si<sub>3</sub>N<sub>4</sub> particles prevented direct metal-to-metal contact and facilitated the formation of a protective tribolayer, resulting in enhanced wear resistance. Hence, the developed Si<sub>3</sub>N<sub>4</sub>/TiAl composites are suitable for various structural and tribological applications.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130113"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012410","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

TiAl matrix composites reinforced with varying weight fractions of Si3N4 ceramic particles were successfully fabricated by the spark plasma sintering method. The microstructure, nanomechanical and tribological properties of the sintered composites were investigated. The microstructural characterization revealed the evolution of a quasi-continuous and continuous network structure consisting of minor fractions of in-situ formed Ti2AlN, unreacted Si3N4 ceramic particles and dominant Ti5Si3 intermetallic phases within the TiAl matrix at Si3N4 content above 1.5 wt%. The in-situ precipitated phases enhanced the nanomechanical and tribological properties of the composites. The 7Si3N4/TiAl composite displayed the best nanomechanical properties, including nanohardness, elastic modulus, and H/Er ratio among the sintered samples. The specific wear rate of the composites decreases with increasing reinforcement content. 7Si3N4/TiAl composite exhibited the lowest specific wear rate of 0.38 ± 0.55 × 10−4 mm3/Nm, representing a 95.6 % improvement in wear resistance compared to the unreinforced pure TiAl alloy. The improved wear performance of the composites was attributed to their load-bearing capacity and wear resistance of the hard, in-situ Ti2AlN, Ti5Si3 and unreacted Si3N4 particles in the TiAl matrix. The composites displayed a transition from adhesive wear to predominantly abrasive wear where the hard Si3N4 particles prevented direct metal-to-metal contact and facilitated the formation of a protective tribolayer, resulting in enhanced wear resistance. Hence, the developed Si3N4/TiAl composites are suitable for various structural and tribological applications.
通过添加 Si3N4 陶瓷颗粒的火花等离子烧结工艺提高 TiAl 合金的微观结构、纳米力学和摩擦学性能
采用火花等离子烧结法成功地制造出了用不同重量分数的 Si3N4 陶瓷颗粒增强的 TiAl 基复合材料。研究了烧结复合材料的微观结构、纳米力学性能和摩擦学性能。微观结构表征显示,当 Si3N4 含量超过 1.5 wt% 时,TiAl 基体中出现了准连续和连续的网络结构,其中包括少量原位形成的 Ti2AlN、未反应的 Si3N4 陶瓷颗粒和主要的 Ti5Si3 金属间相。原位析出相增强了复合材料的纳米力学性能和摩擦学性能。在烧结样品中,7Si3N4/TiAl 复合材料显示出最佳的纳米力学性能,包括纳米硬度、弹性模量和 H/Er 比。复合材料的比磨损率随着增强成分的增加而降低。7Si3N4/TiAl 复合材料的比磨损率最低,为 0.38 ± 0.55 × 10-4 mm3/Nm,与未增强的纯 TiAl 合金相比,耐磨性提高了 95.6%。复合材料耐磨性能的提高归功于其承载能力和 TiAl 基体中坚硬的原位 Ti2AlN、Ti5Si3 和未反应的 Si3N4 颗粒的耐磨性。复合材料显示出从粘着磨损向主要是磨料磨损的过渡,其中坚硬的 Si3N4 颗粒阻止了金属与金属之间的直接接触,促进了保护摩擦层的形成,从而增强了耐磨性。因此,所开发的 Si3N4/TiAl 复合材料适用于各种结构和摩擦学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信