Impact of metrological correlation on the total combined risk in pharmaceutical equivalence evaluations

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS
Maria Luiza de Godoy Bertanha, Felipe Rebello Lourenço
{"title":"Impact of metrological correlation on the total combined risk in pharmaceutical equivalence evaluations","authors":"Maria Luiza de Godoy Bertanha,&nbsp;Felipe Rebello Lourenço","doi":"10.1016/j.chemolab.2024.105267","DOIUrl":null,"url":null,"abstract":"<div><div>Pharmaceutical equivalence evaluation requires a multiparametric conformity assessment for both generic and reference medicines. This paper investigates the impact of metrological correlations on the total combined risk in pharmaceutical equivalence evaluations. The study focused on the equivalence between ranitidine hydrochloride tablets, assessed by determining the average weight, the assay of the active pharmaceutical ingredient, and the uniformity of dosage units. The risks of false conformity decisions were evaluated using Monte Carlo method simulations across four scenarios, each reflecting different correlation conditions. The results of the study focus on evaluating pharmaceutical equivalence between ranitidine hydrochloride tablets from two manufacturers. The tablets were tested for three parameters: average weight, active pharmaceutical ingredient (API) assay, and uniformity of dosage units. The measured values were within the regulatory specifications for both medicines A and B. Four scenarios of metrological correlation were assessed: #1 – actual correlation from shared analytical steps, #2 – correlation between parameters within the same medicine, #3 – correlation between generic and reference medicines, and #4 – uncorrelated parameters. The study revealed that correlations significantly affect total and combined risk values. The correlations between different parameters of the same medicine affect the total risk values, while the correlations between generic and reference medicines for a given parameter influence the combined particular risk values. Correlations between parameters of the same medicine affect total risk values, while correlations between generic and reference medicines impact combined particular risk values. Both types of correlations significantly influence combined total risk values, making metrological correlations crucial in pharmaceutical equivalence evaluations. Proper consideration of these correlations ensures the quality, efficacy, and safety of generic and reference medicines.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"255 ","pages":"Article 105267"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924002077","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Pharmaceutical equivalence evaluation requires a multiparametric conformity assessment for both generic and reference medicines. This paper investigates the impact of metrological correlations on the total combined risk in pharmaceutical equivalence evaluations. The study focused on the equivalence between ranitidine hydrochloride tablets, assessed by determining the average weight, the assay of the active pharmaceutical ingredient, and the uniformity of dosage units. The risks of false conformity decisions were evaluated using Monte Carlo method simulations across four scenarios, each reflecting different correlation conditions. The results of the study focus on evaluating pharmaceutical equivalence between ranitidine hydrochloride tablets from two manufacturers. The tablets were tested for three parameters: average weight, active pharmaceutical ingredient (API) assay, and uniformity of dosage units. The measured values were within the regulatory specifications for both medicines A and B. Four scenarios of metrological correlation were assessed: #1 – actual correlation from shared analytical steps, #2 – correlation between parameters within the same medicine, #3 – correlation between generic and reference medicines, and #4 – uncorrelated parameters. The study revealed that correlations significantly affect total and combined risk values. The correlations between different parameters of the same medicine affect the total risk values, while the correlations between generic and reference medicines for a given parameter influence the combined particular risk values. Correlations between parameters of the same medicine affect total risk values, while correlations between generic and reference medicines impact combined particular risk values. Both types of correlations significantly influence combined total risk values, making metrological correlations crucial in pharmaceutical equivalence evaluations. Proper consideration of these correlations ensures the quality, efficacy, and safety of generic and reference medicines.
计量相关性对药品等效性评价中总综合风险的影响
药品等效性评价需要对仿制药和参比药进行多参数符合性评估。本文研究了计量相关性对药品等效性评价中总综合风险的影响。研究重点是盐酸雷尼替丁片剂之间的等效性,通过确定平均重量、活性药物成分的测定和剂量单位的均匀性进行评估。采用蒙特卡洛法对四种情况进行了模拟,每种情况都反映了不同的相关条件,从而评估了错误符合性决定的风险。研究结果重点评估了两家制造商生产的盐酸雷尼替丁片剂之间的药物等效性。对片剂的三个参数进行了测试:平均重量、活性药物成分 (API) 检测和剂量单位的均匀性。对四种计量相关性情况进行了评估:#1 - 来自共享分析步骤的实际相关性,2 - 同一种药品中参数之间的相关性,3 - 仿制药和参比药品之间的相关性,以及 4 - 不相关参数。研究表明,相关性对总风险值和综合风险值有很大影响。同一种药品的不同参数之间的相关性会影响总风险值,而特定参数的仿制药和参比药品之间的相关性则会影响特定风险的综合值。同一种药品不同参数之间的相关性会影响总风险值,而仿制药和参比药之间的相关性则会影响综合特定风险值。这两类相关性都会对综合总风险值产生重大影响,因此计量相关性在药品等效性评价中至关重要。适当考虑这些相关性可确保仿制药和对照药的质量、疗效和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信