Large-scale dependent multiple testing via higher-order hidden Markov models.

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Canhui Li, Jiangzhou Wang, Pengfei Wang
{"title":"Large-scale dependent multiple testing via higher-order hidden Markov models.","authors":"Canhui Li, Jiangzhou Wang, Pengfei Wang","doi":"10.1080/10543406.2024.2420657","DOIUrl":null,"url":null,"abstract":"<p><p>Taking into account the local dependence structure in large-scale multiple testing is expected to improve both the efficiency of the testing procedure and the interpretability of scientific findings. The hidden Markov model (HMM), as an effective model to describe the sequential dependence, has been successfully applied to large-scale multiple testing with local correlations. However, in many applications, the first-order Markov chain is not flexible enough to capture the complexity of local correlations. To address this issue, this paper proposes a novel multiple testing procedure that uses a higher-order Markov chain to better characterize local correlations among tests. The proposed procedure is validated by theoretical results and simulation studies, which show that it outperforms its competitors in terms of power. Finally, a real data analysis is presented to demonstrate the favorable performance of the proposed procedure.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-13"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2420657","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Taking into account the local dependence structure in large-scale multiple testing is expected to improve both the efficiency of the testing procedure and the interpretability of scientific findings. The hidden Markov model (HMM), as an effective model to describe the sequential dependence, has been successfully applied to large-scale multiple testing with local correlations. However, in many applications, the first-order Markov chain is not flexible enough to capture the complexity of local correlations. To address this issue, this paper proposes a novel multiple testing procedure that uses a higher-order Markov chain to better characterize local correlations among tests. The proposed procedure is validated by theoretical results and simulation studies, which show that it outperforms its competitors in terms of power. Finally, a real data analysis is presented to demonstrate the favorable performance of the proposed procedure.

通过高阶隐马尔可夫模型进行大规模依赖多重测试
在大规模多重检验中考虑局部依赖结构,有望提高检验程序的效率和科学发现的可解释性。隐马尔可夫模型(HMM)是描述序列依赖性的有效模型,已成功应用于具有局部相关性的大规模多重检验。然而,在许多应用中,一阶马尔可夫链不够灵活,无法捕捉局部相关性的复杂性。为了解决这个问题,本文提出了一种新的多重测试程序,它使用高阶马尔可夫链来更好地描述测试之间的局部相关性。本文通过理论结果和模拟研究对所提出的程序进行了验证,结果表明该程序在功率方面优于竞争对手。最后,通过实际数据分析,证明了所提程序的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信