On Mechanical Behavior and Characterization of Soft Tissues.

IF 2.3 Q3 ENGINEERING, BIOMEDICAL
Biomedical Engineering and Computational Biology Pub Date : 2024-11-02 eCollection Date: 2024-01-01 DOI:10.1177/11795972241294115
Radhika Chavan, Nitin Kamble, Chetan Kuthe, Sandeep Sarnobat
{"title":"On Mechanical Behavior and Characterization of Soft Tissues.","authors":"Radhika Chavan, Nitin Kamble, Chetan Kuthe, Sandeep Sarnobat","doi":"10.1177/11795972241294115","DOIUrl":null,"url":null,"abstract":"<p><p>The growth and advancements done in solid mechanics and metallurgy have come up with various characterization techniques that help in prediction of elastic properties of different types of materials-isotropic, anisotropic, transverse isotropic, etc. Soft tissues which refer to fibrous tissues, fat, blood vessels, muscles and other tissues that support the body were found to have some control over its mechanical properties. This mechanical behavior of soft tissues has recently shifted the attention of many researchers to develop methods to characterize and describe the mechanical response of soft tissues. The paper discusses the biomechanical nature of soft tissues and the work done to characterize their elastic properties. The paper gives a review of the behavior and characteristics of soft tissues extracted from various experimental tests employed in their characterization. Soft tissues exhibit complex behavior and various complexities are involved in their experimental testing due to their small size and fragile nature. The paper focuses on the conventionally used tensile and compression tests and the difficulties encountered in soft tissue characterization. It also describes the utility of ultrasound technique which is a non-destructive method to characterize soft tissues. Tensile and compression test used to characterize materials are destructive in nature. Ultrasound technique can provide a better way to characterize material in a non-destructive manner.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"15 ","pages":"11795972241294115"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531667/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11795972241294115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The growth and advancements done in solid mechanics and metallurgy have come up with various characterization techniques that help in prediction of elastic properties of different types of materials-isotropic, anisotropic, transverse isotropic, etc. Soft tissues which refer to fibrous tissues, fat, blood vessels, muscles and other tissues that support the body were found to have some control over its mechanical properties. This mechanical behavior of soft tissues has recently shifted the attention of many researchers to develop methods to characterize and describe the mechanical response of soft tissues. The paper discusses the biomechanical nature of soft tissues and the work done to characterize their elastic properties. The paper gives a review of the behavior and characteristics of soft tissues extracted from various experimental tests employed in their characterization. Soft tissues exhibit complex behavior and various complexities are involved in their experimental testing due to their small size and fragile nature. The paper focuses on the conventionally used tensile and compression tests and the difficulties encountered in soft tissue characterization. It also describes the utility of ultrasound technique which is a non-destructive method to characterize soft tissues. Tensile and compression test used to characterize materials are destructive in nature. Ultrasound technique can provide a better way to characterize material in a non-destructive manner.

论软组织的力学行为和特征。
随着固体力学和冶金学的发展和进步,各种表征技术应运而生,有助于预测各向同性、各向异性、横向各向同性等不同类型材料的弹性特性。软组织指的是纤维组织、脂肪、血管、肌肉和其他支撑身体的组织,人们发现这些组织的机械特性具有一定的可控性。近来,软组织的这种机械行为引起了许多研究人员的关注,他们开始开发表征和描述软组织机械响应的方法。本文讨论了软组织的生物力学性质以及表征其弹性特性的工作。本文综述了从表征软组织的各种实验测试中提取的软组织行为和特征。软组织表现出复杂的行为,由于其体积小和易碎的特性,其实验测试涉及各种复杂问题。本文重点介绍了传统的拉伸和压缩试验,以及在软组织表征中遇到的困难。本文还介绍了超声波技术的实用性,它是表征软组织的一种非破坏性方法。用于表征材料特性的拉伸和压缩试验具有破坏性。超声波技术可以提供一种以非破坏性方式表征材料特性的更好方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信