System analysis with life cycle assessment for NiMH battery recycling.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kivanc Korkmaz, Christian Junestedt, Nilay Elginoz, Mats Almemark, Michael Svärd, Åke C Rasmuson, Kerstin M Forsberg
{"title":"System analysis with life cycle assessment for NiMH battery recycling.","authors":"Kivanc Korkmaz, Christian Junestedt, Nilay Elginoz, Mats Almemark, Michael Svärd, Åke C Rasmuson, Kerstin M Forsberg","doi":"10.1098/rsta.2023.0243","DOIUrl":null,"url":null,"abstract":"<p><p>The nickel metal hydride (NiMH) battery technology has been designed for use in electric vehicles, solar-powered applications and power tools. These batteries contain the critical and strategic raw materials cobalt, nickel and several rare earth elements (REE). When designing a battery recycling process, there are several choices to be made regarding end-products and process chemicals. The aim of this study is to investigate and compare the environmental and economic sustainability of different recycling options for NiMH batteries by taking projected market developments into consideration and by applying life cycle assessment and life cycle costing methods. The comparative study is limited to recovery of the REEs. Two hydrometallurgical processes for recovery of the REEs from the anode material are compared with extraction of REEs from primary sources in China. The processes compared are a high-temperature sulfation roasting process and a process based on hydrochloric acid leaching followed by precipitation of REE oxalates. By comparing the different recycling approaches, the hydrochloric acid process performs best. However, the use of oxalic acid has a large impact on the overall sustainability footprint. For the sulfation roasting process, the energy, sodium hydroxide and sulphuric acid consumption contribute most to the total environmental footprint. This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2284","pages":"20230243"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531899/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0243","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The nickel metal hydride (NiMH) battery technology has been designed for use in electric vehicles, solar-powered applications and power tools. These batteries contain the critical and strategic raw materials cobalt, nickel and several rare earth elements (REE). When designing a battery recycling process, there are several choices to be made regarding end-products and process chemicals. The aim of this study is to investigate and compare the environmental and economic sustainability of different recycling options for NiMH batteries by taking projected market developments into consideration and by applying life cycle assessment and life cycle costing methods. The comparative study is limited to recovery of the REEs. Two hydrometallurgical processes for recovery of the REEs from the anode material are compared with extraction of REEs from primary sources in China. The processes compared are a high-temperature sulfation roasting process and a process based on hydrochloric acid leaching followed by precipitation of REE oxalates. By comparing the different recycling approaches, the hydrochloric acid process performs best. However, the use of oxalic acid has a large impact on the overall sustainability footprint. For the sulfation roasting process, the energy, sodium hydroxide and sulphuric acid consumption contribute most to the total environmental footprint. This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.

镍氢电池回收的系统分析与生命周期评估。
镍金属氢化物(NiMH)电池技术设计用于电动汽车、太阳能发电应用和电动工具。这些电池含有关键的战略原材料钴、镍和几种稀土元素(REE)。在设计电池回收工艺时,需要对最终产品和工艺化学品做出多种选择。本研究的目的是在考虑市场发展预测的基础上,采用生命周期评估和生命周期成本计算方法,调查和比较镍氢电池不同回收方案在环境和经济方面的可持续性。比较研究仅限于稀土元素的回收。将从正极材料中回收 REEs 的两种湿法冶金工艺与从中国原始资源中提取 REEs 的工艺进行了比较。所比较的工艺是高温硫化焙烧工艺和基于盐酸浸出然后沉淀 REE 草酸盐的工艺。通过比较不同的回收方法,盐酸工艺表现最佳。然而,草酸的使用对整体可持续性足迹有很大影响。就硫化焙烧工艺而言,能源、氢氧化钠和硫酸的消耗对总环境足迹的影响最大。本文是 "可持续金属:科学与系统 "讨论会议议题的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信