Wen Zheng, Jinjing Guo, Shuyan Ma, Rong Sun, Yihua Song, Yuanmeng Chen, Renfang Mao, Yihui Fan
{"title":"The NEDD4-binding protein N4BP1 degrades mRNA substrates through the coding sequence independent of nonsense-mediated decay.","authors":"Wen Zheng, Jinjing Guo, Shuyan Ma, Rong Sun, Yihua Song, Yuanmeng Chen, Renfang Mao, Yihui Fan","doi":"10.1016/j.jbc.2024.107954","DOIUrl":null,"url":null,"abstract":"<p><p>3'-Untranslated regions (3'UTRs) are recognized for their role in regulating mRNA turnover while the turnover of a specific group of mRNAs mediated by coding sequences (CDS) remains poorly understood. N4BP1 is a critical inflammatory regulator in vivo with a molecular mechanism that is not yet clearly defined. Our study reveals that N4BP1 efficiently degrades its mRNA targets via CDS rather than the 3'-UTR. This CDS-dependent mRNA turnover mechanism appears to be a general feature of N4BP1, as evidenced by testing multiple mRNA substrates, such as Fos-C, Fos-B, Jun-B and CXCL1. Detailed mapping of the motif identified a crucial 33nt (289-322) sequence near the 5'-end of Fos-C-CDS, where the presence of polyC is necessary for N4BP1-mediated degradation. Functional studies involving domain deletion and point mutations showed that both the KH and NYN domains are essential for N4BP1 to restrict mRNA substrates. The function of N4BP1 in mRNA turnover is not dependent on nonsense-mediated decay as it efficiently restricts mRNA substrates even in cells deficient in UPF1, UPF3A, and UPF3B. Additionally, the function of N4BP1 is not reliant on LUC7L3 despite its known association with this protein. Our findings suggest that N4BP1 acts as an endoribonuclease to degrade mRNA substrates primarily through coding sequences containing a C-rich motif.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107954","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
3'-Untranslated regions (3'UTRs) are recognized for their role in regulating mRNA turnover while the turnover of a specific group of mRNAs mediated by coding sequences (CDS) remains poorly understood. N4BP1 is a critical inflammatory regulator in vivo with a molecular mechanism that is not yet clearly defined. Our study reveals that N4BP1 efficiently degrades its mRNA targets via CDS rather than the 3'-UTR. This CDS-dependent mRNA turnover mechanism appears to be a general feature of N4BP1, as evidenced by testing multiple mRNA substrates, such as Fos-C, Fos-B, Jun-B and CXCL1. Detailed mapping of the motif identified a crucial 33nt (289-322) sequence near the 5'-end of Fos-C-CDS, where the presence of polyC is necessary for N4BP1-mediated degradation. Functional studies involving domain deletion and point mutations showed that both the KH and NYN domains are essential for N4BP1 to restrict mRNA substrates. The function of N4BP1 in mRNA turnover is not dependent on nonsense-mediated decay as it efficiently restricts mRNA substrates even in cells deficient in UPF1, UPF3A, and UPF3B. Additionally, the function of N4BP1 is not reliant on LUC7L3 despite its known association with this protein. Our findings suggest that N4BP1 acts as an endoribonuclease to degrade mRNA substrates primarily through coding sequences containing a C-rich motif.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.