Yijia Zhang, Lifeng Chang, Xin Xin, Yixuan Qiao, Wenna Qiao, Jihui Ping, Jun Xia, Juan Su
{"title":"Influenza A virus-induced glycolysis facilitates virus replication by activating ROS/HIF-1α pathway.","authors":"Yijia Zhang, Lifeng Chang, Xin Xin, Yixuan Qiao, Wenna Qiao, Jihui Ping, Jun Xia, Juan Su","doi":"10.1016/j.freeradbiomed.2024.10.304","DOIUrl":null,"url":null,"abstract":"<p><p>As a highly contagious acute respiratory disease, influenza A virus (A/WSN/1933) poses a huge threat to human health and public health. influenza A virus proliferation relies on glucose metabolism in host cells, yet the effects of influenza A virus on glucose metabolism and the underlying molecular mechanisms remain unclear. Here, we created models of WSN virus-infected mice and A549 cells, along with analyzing metabolomics and transcriptomics data, to investigate how WSN virus infection affects host cell glucose metabolism and specific mechanisms. Analysis of metabolites and gene expression showed that WSN virus infection triggers glycolysis in A549 cells, with notable upregulation of hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), hypoxia-inducible factor-1 alpha (HIF-1α), and elevated lactate levels. Additionally, it leads to mitochondrial impairment and heightened reactive oxygen species (ROS) generation. Elevated levels of glucose may enhance the replication of WSN virus, whereas inhibitors of glycolysis can reduce it. Enhancement of HIF-1α activation facilitated replication of WSN virus through stimulation of lactate synthesis, with the primary influence of glycolysis on WSN virus replication being mediated by ROS/HIF-1α signaling. Mice given HIF-1α inhibitor PTX-478 or glycolysis inhibitor 2-Deoxyglucose (2-DG) exhibited reduced lactate levels and decreased WSN virus replication, along with mitigated weight loss and lung damage. In summary, WSN virus-induced glycolysis has been demonstrated to enhance virus replication through the activation of the ROS/HIF-1α pathway, suggesting potential new targets for combating the virus.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2024.10.304","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As a highly contagious acute respiratory disease, influenza A virus (A/WSN/1933) poses a huge threat to human health and public health. influenza A virus proliferation relies on glucose metabolism in host cells, yet the effects of influenza A virus on glucose metabolism and the underlying molecular mechanisms remain unclear. Here, we created models of WSN virus-infected mice and A549 cells, along with analyzing metabolomics and transcriptomics data, to investigate how WSN virus infection affects host cell glucose metabolism and specific mechanisms. Analysis of metabolites and gene expression showed that WSN virus infection triggers glycolysis in A549 cells, with notable upregulation of hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), hypoxia-inducible factor-1 alpha (HIF-1α), and elevated lactate levels. Additionally, it leads to mitochondrial impairment and heightened reactive oxygen species (ROS) generation. Elevated levels of glucose may enhance the replication of WSN virus, whereas inhibitors of glycolysis can reduce it. Enhancement of HIF-1α activation facilitated replication of WSN virus through stimulation of lactate synthesis, with the primary influence of glycolysis on WSN virus replication being mediated by ROS/HIF-1α signaling. Mice given HIF-1α inhibitor PTX-478 or glycolysis inhibitor 2-Deoxyglucose (2-DG) exhibited reduced lactate levels and decreased WSN virus replication, along with mitigated weight loss and lung damage. In summary, WSN virus-induced glycolysis has been demonstrated to enhance virus replication through the activation of the ROS/HIF-1α pathway, suggesting potential new targets for combating the virus.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.